Skip to main content

Advertisement

Log in

Culture-expanded human dermal stem cells exhibit donor to donor differences in cAMP generation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cell techniques have facilitated a number of potential uses for such cells in cell therapy and drug development. Studies of the cAMP/protein kinase A (PKA) pathway are widely employed to investigate the effects of a large variety of substances. We assayed the cAMP pathway in human skin-derived mesenchymal stem cells (S-MSC) to evaluate donor to donor variations in response to pharmacological manipulations in vitro. Immunophenotyping of S-MSC revealed that, in general, 95% of S-MSCs were positive for CD90, CD73 and CD105 and negative for the expression of haemopoetic markers CD14, CD45 and human leukocyte antigen-DR (HLA-DR). Nevertheless, fluctuations occurred in basal cAMP levels from 5 pmol/mg to 18 pmol/mg. Total cAMP response element binding protein (CREB) concentrations ranged from 0.8 ng/ml to 1 ng/ml, whereas the proportions of phospho-CREB versus total CREB differed between the cell lines. Basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) stimulated cAMP generation, whereas leukaemia inhibiting factor reduced some of their effects. Forskolin (0.05 and 1 mM) acted in synergy with FGF-2 and EGF; however, it caused pronounced donor to donor differences in the increase of cAMP and phospho-CREB levels. Additionally, dibutyryl-cAMP caused significant donor to donor variations in cell proliferation, possibly indicating a change of cell differentiation status. We speculate that similar donor diversity might be observed after cell stimulation with various Gs-protein-coupled receptor ligands. Heterogeneity of donor cell responses to stimulation of the cAMP pathway indicates the need for wide safety margins for S-MSC use in drug screening; nevertheless, knowledge of this heterogeneity might be useful for the design of donor-specific cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci USA 100 Suppl 1:11830–11835

    Article  PubMed  CAS  Google Scholar 

  • Belicchi M, Pisati F, Lopa R, Porretti L, Fortunato F, Sironi M, Scalamogna M, Parati EA, Bresolin N, Torrente Y (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486

    Article  PubMed  CAS  Google Scholar 

  • Black EG, Logan A, Davis JR, Sheppard MC (1990) Basic fibroblast growth factor affects DNA synthesis and cell function and activates multiple signalling pathways in rat thyroid FRTL-5 and pituitary GH3 cells. J Endocrinol 127:39–46

    Article  PubMed  CAS  Google Scholar 

  • Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH, Collas P, Brinchmann JE (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18:353–383

    Article  PubMed  CAS  Google Scholar 

  • De Felici M, Farini D, Dolci S (2009) In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells. Curr Stem Cell Res Ther 4:87–97

    Article  PubMed  Google Scholar 

  • Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, Pollett JB, Sun B, Urish KL, Gharaibeh BM, Cao B, Rubin RT, Huard J (2007) A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J Cell Biol 177:73–86

    Article  PubMed  CAS  Google Scholar 

  • Dworkin S, Malaterre J, Hollande F, Darcy PK, Ramsay RG, Mantamadiotis T (2009) cAMP response element binding protein is required for mouse neural progenitor cell survival and expansion. Stem Cells 27:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socialing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  • Girolamo LD, Lopa S, Arrigoni E, Sartori MF, Preis FW, Brini AT (2009) Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 11:1–11

    Article  Google Scholar 

  • Hermann A, List C, Habisch HJ, Vukicevic V, Ehrhart-Bornstein M, Brenner R, Bernstein P, Fickert S, Storch A (2010) Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy 2:17–30

    Article  Google Scholar 

  • Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR (2010) Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock 33:24–30

    Article  PubMed  CAS  Google Scholar 

  • Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23:305–314

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Choi JM, Kim JW, Ham DS, Ghil SH, Kim MK, Kim-Kwon Y, Hong SY, Ahn SC, Kim SU, Lee YD, Suh-Kim H (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 16:1357–1361

    Article  PubMed  CAS  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60

    Article  PubMed  Google Scholar 

  • Kroeze WK, Sheffler DJ, Roth BL (2003) G-protein-coupled receptors at a glance. J Cell Sci 116:4867–4869

    Article  PubMed  CAS  Google Scholar 

  • Lin TM, Tsai JL, Lin SD, Lai CS, Chang CC (2005) Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev 14:92–102

    Article  PubMed  CAS  Google Scholar 

  • Lo KW, Kan HM, Ashe KM, Laurencin CT (2011) The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med (doi:10.1002/term.395)

  • Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21:5–14

    Article  PubMed  CAS  Google Scholar 

  • Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA, Wöltje M (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 3:10–16

    Google Scholar 

  • Pekkinen M, Ahlström ME, Riehle U, Huttunen MM, Lamberg-Allardt CJ (2008) Effects of phosphodiesterase 7 inhibition by RNA interference on the gene expression and differentiation of human mesenchymal stem cell-derived osteoblasts. Bone 43:84–91

    Article  PubMed  CAS  Google Scholar 

  • Ray DW, Ren SG, Melmed S (1996) Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. J Clin Invest 97:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Riekstina U, Muceniece R, Cakstina I, Muiznieks I, Ancans J (2008) Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58:153–162

    Article  PubMed  CAS  Google Scholar 

  • Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5:378–386

    Article  PubMed  CAS  Google Scholar 

  • Romagnani P, Lasagni L, Mazzinghi B, Lazzeri E, Romagnani S (2007) Pharmacological modulation of stem cell function. Curr Med Chem 14:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Sevetson BR, Kong X, Lawrence JC (1993) Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 90:10305–10309

    Article  PubMed  CAS  Google Scholar 

  • Siddappa R, Licht R, Blitterswijk C van, Boer J de (2007) Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, Rijn L van, Gaspar C, Fodde R, Janssen F, Blitterswijk C van, Boer J de (2008) cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci USA 105(20):7281–7286

    Article  PubMed  CAS  Google Scholar 

  • Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    Article  PubMed  CAS  Google Scholar 

  • Tegenge MA, Roloff F, Bicker G (2011) Rapid differentiation of human embryonal carcinoma stem cells (NT2) into neurons for neurite outgrowth analysis. Cell Mol Neurobiol 31:635–643

    Article  PubMed  CAS  Google Scholar 

  • Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    Article  PubMed  CAS  Google Scholar 

  • Trosko JE, Chang CH (2010) Factors to consider in the use of stem cells for pharmaceutical drug development and for chemical safety assessment. Toxicology 270:18–34

    Article  PubMed  CAS  Google Scholar 

  • Trounson A (2009) Perspectives in human stem cell therapeutic research. BMC Med 7:29

    Article  PubMed  Google Scholar 

  • Ugland H, Boquest AC, Naderi S, Collas P, Blomhoff HK (2008) cAMP-mediated induction of cyclin E sensitizes growth-arrested adipose stem cells to DNA damage-induced apoptosis. Mol Biol Cell 19:5082–5092

    Article  PubMed  CAS  Google Scholar 

  • Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ (1997) cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM, Hescheler J (1992) Development of an in vitro cardiomyocytes cell model for embryotoxicological and pharmacological studies. ALTEX 9:29–42

    PubMed  Google Scholar 

  • Wobus AM, Wallukat G, Hescheler J (1991) Puripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D, Beermann F, Barrandon Y, Sommer L (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sc 45:1743–1751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Muceniece.

Additional information

This work was supported by European Social Foundation 2009/0217/1DP/1.1.1.2.0/09/APIA/VIAA/031 and Latvian Science Council grant no. 1037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jekabsons, K., Riekstina, U., Parfejevs, V. et al. Culture-expanded human dermal stem cells exhibit donor to donor differences in cAMP generation. Cell Tissue Res 345, 253–263 (2011). https://doi.org/10.1007/s00441-011-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1203-9

Keywords

Navigation