Skip to main content
Log in

Nuage morphogenesis becomes more complex: two translocation pathways and two forms of nuage coexist in Drosophila germline syncytia

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have developed a simple and reliable method of preserving antigen immunoreactivity with concomitant excellent retention of the cell ultrastructure. Using this method, we have been able to follow the origin and developmental stages of nuage accumulations within the nurse cell/oocyte syncytium in the ovary of the fruit fly, Drosophila melanogaster, at the ultrastructural level. We have found two morphologically and biochemically distinct forms of nuage material in the nurse cell cytoplasm: translocating accumulations of nuage containing the Vasa protein, termed sponge bodies and stationary polymorphic accumulations of nuage enriched in Argonaute and Survival of motor neuron proteins. Immunogold labeling combined with confocal fluorescent and ultrastructural analyses have revealed that the Vasa-containing nuage accumulations remain closely associated with the cisternae of the endoplasmic reticulum throughout their lifetimes. The migration mechanism of the Vasa-positive nuage appears distinct from the microtubule-dependent translocation of oskar ribonucleoprotein complexes. We postulate that these two distinct nuage translocation pathways converge in the formation of the polar granules within the polar/germ plasm of the oocyte posterior pole. We also provide morphological and immunocytochemical evidence that these polymorphic nuage accumulations correspond to the recently described cytoplasmic domains termed U body-P body complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anne J, Mechler BM (2005) Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuléen. Development 132:2167–2177

    Article  PubMed  CAS  Google Scholar 

  • Arkov AL, Ramos A (2010) Building RNA-protein granules: insight from the germline. Trends Cell Biol 20:482–490

    Article  PubMed  CAS  Google Scholar 

  • Bardsley A, McDonald K, Boswell RE (1993) Distribution of Tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119:207–219

    PubMed  CAS  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087

    Article  PubMed  CAS  Google Scholar 

  • Battle DJ, Kasim M, Yong J, Lotti F, Lau CK, Mouaikel J, Zhang Z, Han K, Wan L, Dreyfuss G (2006) The SMN complex: an assembly machine for RNPs. Cold Spring Harb Symp Quant Biol 71:313–320

    Article  PubMed  CAS  Google Scholar 

  • Becalska AN, Gavis ER (2009) Lighting up mRNA localization in Drosophila oogenesis. Development 136:2493–2503

    Article  PubMed  CAS  Google Scholar 

  • Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9:971–980

    Article  PubMed  CAS  Google Scholar 

  • Boswell RE, Mahowald AP (1985) tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104

    Article  PubMed  CAS  Google Scholar 

  • Breitwieser W, Markussen FH, Horstmann H, Ephrussi A (1996) Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188

    Article  PubMed  CAS  Google Scholar 

  • Brendza RP, Serbus LR, Duffy JB, Saxton WM (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289:2120–2122

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Tan L, Schedl P (1999) The Drosophila CPEB homolog, Orb, is required for oskar protein expression in oocytes. Dev Biol 215:91–106

    Article  PubMed  CAS  Google Scholar 

  • Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes by entrapment and association with endoplasmic reticulum. Mol Biol Cell 15:4669–4681

    Article  PubMed  CAS  Google Scholar 

  • Cohen RS (2005) The role of membranes and membrane trafficking in RNA localization. Biol Cell 97:5–18

    Article  PubMed  CAS  Google Scholar 

  • Deshler JO, Highet MI, Schnapp BJ (1997) Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science 276:1128–1131

    Article  PubMed  CAS  Google Scholar 

  • Du TG, Schmid M, Jansen RP (2007) Why cells move messages: the biological functions of mRNA localization. Semin Cell Dev Biol 18:171–177

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ line. Int Rev Cytol 43:229–281

    Article  PubMed  CAS  Google Scholar 

  • English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21:596–602

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130:859–871

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Liu Q, Dreyfuss G (1997) The SMN–Gemin2 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Gamberi C, Johnstone O, Lasko P (2006) Drosophila RNA binding proteins. Int Rev Cytol 248:43–139

    Article  PubMed  CAS  Google Scholar 

  • Gerst JE (2008) Message on the web: mRNA and ER co-trafficking. Trends Cell Biol 18:68–76

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DE, Berg CA (1995) Homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DEH family of RNA-dependent ATPases. Genes Dev 9:2495–2508

    Article  PubMed  CAS  Google Scholar 

  • Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128:2823–2832

    PubMed  CAS  Google Scholar 

  • Hay B, Jan LY, Jan YN (1988a) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587

    Article  PubMed  CAS  Google Scholar 

  • Hay B, Jan LY, Jan YN (1988b) Identification of a component of Drosophila polar granules. Development 103:635–640

    Google Scholar 

  • Hay B, Jan LY, Jan YN (1990) Localization of Vasa, a component of Drosophila polar granules, in maternal effect mutants that alter embryonic anterioposterior polarity. Development 109:425–433

    PubMed  CAS  Google Scholar 

  • Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326:1212–1216

    Article  PubMed  CAS  Google Scholar 

  • Kim-Ha J, Smith JL, Macdonald PM (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35

    Article  PubMed  CAS  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential. Cell 81:403–412

    Article  PubMed  CAS  Google Scholar 

  • King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121:287–297

    PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1998) Apparent continuity between the messenger transport organizer and late RNA localization pathways during oogenesis in Xenopus. Mech Dev 73:95–106

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (2005) RNA localization mechanisms in oocytes. J Cell Sci 118:269–282

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Zearfoss NR, Etkin LD (2002) Mechanisms of subcellular mRNA localization. Cell 108:533–544

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Etkin LD (2004) The Balbiani body and germ cell determinants: 150 years later. Curr Topics Dev Biol 59:1–36

    Article  CAS  Google Scholar 

  • Lasko PF, Ashburner M (1990) Posterior localization of Vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev 4:905–921

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Chen L (1988) Dynamic behavior of endoplasmic reticulum in living cells. Cell 54:37–46

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Davies SE, Liu J-L (2009) The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body–P body pathway. Dev Biol 332:142–155

    Article  PubMed  CAS  Google Scholar 

  • Lehmann R, Nusslein-Volhard C (1986) Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47:141–152

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Diehl-Jones W, Lasko P (1994) Localization of Vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120:1201–1211

    PubMed  CAS  Google Scholar 

  • Lim AK, Kai T (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci USA 104:6714–6719

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Gall JG (2007) U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA 104:11655–11659

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG (2006) The Drosophila melanogaster Cajal body. J Cell Biol 172:875–884

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Mahowald AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151:201–215

    Article  Google Scholar 

  • Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213

    Article  PubMed  CAS  Google Scholar 

  • Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  PubMed  CAS  Google Scholar 

  • Matova N, Mahajan-Miklos S, Mooseker MS, Cooley L (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126:5645–5657

    PubMed  CAS  Google Scholar 

  • McCall K, Steller H (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279:230–234

    Article  PubMed  CAS  Google Scholar 

  • Meignin C, Davis I (2010) Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 22:112–119

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Fischer U (2002) Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 21:5853–5863

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Buhler D, Pillai R, Lottspeich F, Fischer U (2001) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3:945–949

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472–478

    Article  PubMed  CAS  Google Scholar 

  • Minakhina S, Steward R (2005) Axes formation and RNA localization. Curr Opin Gen Dev 15:416–421

    Article  CAS  Google Scholar 

  • Nakamura A, Amikura R, Mukai M, Kobayashi S, Lasko PF (1996) Required for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science 274:2075–2079

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Amikura R, Hanyu K, Kobayashi S (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128:3233–3242

    PubMed  CAS  Google Scholar 

  • Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH (2000) Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol 79:610–620

    Article  PubMed  CAS  Google Scholar 

  • Palacios IM (2007) How does an mRNA find its way? Intracellular localisation of transcripts. Semin Cell Dev Biol 18:163–170

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Seth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    Article  PubMed  CAS  Google Scholar 

  • Patil VS, Kai T (2010) Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr Biol 20:724–730

    Article  CAS  Google Scholar 

  • Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–211

    Article  PubMed  CAS  Google Scholar 

  • Rongo C, Lehmann R (1996) Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet 12:102–109

    Article  PubMed  CAS  Google Scholar 

  • Rongo C, Gavis ER, Lehmann R (1995) Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121:2737–2746

    PubMed  CAS  Google Scholar 

  • Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55:1141–1163

    Article  PubMed  CAS  Google Scholar 

  • Schupbach T, Wieschaus E (1986) Maternal-effect mutations altering the anteriorposterior pattern of the Drosophila embryo. Roux's Arch Dev Biol 195:302–317

    Article  Google Scholar 

  • Snee MJ, Macdonald PM (2004) Live imaging of nuage and polar granules: evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components. J Cell Sci 117:2109–2120

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 1–70

    Google Scholar 

  • St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6:363–375

    Article  PubMed  CAS  Google Scholar 

  • Styhler S, Nakamura A, Swan A, Suter B, Lasko P (1998) VASA is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125:1569–1578

    PubMed  CAS  Google Scholar 

  • Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf WE, Alberts BM, Jan YN, Jongens TA (1993) A central role for microtubules in the differentiation of Drosophila oocytes. Development 118:1169–1180

    PubMed  CAS  Google Scholar 

  • Thomson T, Liua N, Arkov A, Lehmann R, Lasko P (2008) Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev 125:865–873

    Article  PubMed  CAS  Google Scholar 

  • Tinker R, Silver D, Montell DJ (1998) Requirement for the vasa RNA helicase in gurken mRNA localization. Dev Biol 199:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tomancak P, Guichet A, Zavorszky P, Ephrussi A (1998) Oocyte polarity depends on regulation of gurken by Vasa. Development 125:1723–1732

    PubMed  CAS  Google Scholar 

  • Vedrenne C, Hauri H-P (2006) Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7:639–646

    Article  PubMed  CAS  Google Scholar 

  • Waterman-Storer C, Salmon E (1998) Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 8:798–806

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148:427–440

    Article  PubMed  CAS  Google Scholar 

  • Wilsch-Brauninger M, Schwarz H, Nusslein-Volhard C (1997) A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139:817–829

    Article  PubMed  CAS  Google Scholar 

  • Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D (2008) In vivo imagining of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Janusz Kubrakiewicz (University of Wroclaw) for providing the confocal facilities and generously sharing ER-Tracker. We thank Dr. William W. Mattox (M.D. Anderson Cancer Center) for supplying Drosophila, Dr. Arnold Grabiec for help with the collection of the confocal data and Ms. Elzbieta Kisiel for preparing the figures. Finally, our thanks are due to anonymous reviewers for comments and suggestions that helped to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz K. Jaglarz.

Additional information

This research was supported by research grant K/ZDS/000791. M. Kloc is supported by NSF grant IOS-0904186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaglarz, M.K., Kloc, M., Jankowska, W. et al. Nuage morphogenesis becomes more complex: two translocation pathways and two forms of nuage coexist in Drosophila germline syncytia. Cell Tissue Res 344, 169–181 (2011). https://doi.org/10.1007/s00441-011-1145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1145-2

Keywords

Navigation