Skip to main content
Log in

Modulation of B cell responses by Toll-like receptors

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

B lymphocytes are well known because of their key role in mediating humoral immune responses. Upon encounter with antigen and on cognate interaction with T cells, they differentiate into antibody-secreting plasma cells, which are critical for protection against a variety of pathogens. In addition to their antibody-production function, B cells are efficient antigen-presenting cells and express a variety of pathogen recognition receptors (PRRs). Engagement of these PRRs with their respective ligands results in cytokine and chemokine secretion and the upregulation of co-stimulatory molecules. These events constitute innate immune responses. Toll-like receptor (TLR) activation provides a third signal for B cell activation and is essential for optimal antigen-specific antibody responses. In some situations, TLR activation in B cells can result in autoimmunity. The purpose of this review is to provide some insights into the way that TLRs influence innate and adaptive B cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, Zhou X, Howard RG, Rothstein TL, Carroll MC (1996) Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4:251–262

    Article  CAS  PubMed  Google Scholar 

  • Asquith MJ, Boulard O, Powrie F, Maloy KJ (2010) Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease. Gastroenterology 139:519–529, 529.e1-2

    Article  CAS  PubMed  Google Scholar 

  • Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13:543–551

    Article  CAS  PubMed  Google Scholar 

  • Barr TA, Brown S, Ryan G, Zhao J, Gray D (2007) TLR-mediated stimulation of APC: distinct cytokine responses of B cells and dendritic cells. Eur J Immunol 37:3040–3053

    Article  CAS  PubMed  Google Scholar 

  • Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G (2005) Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 174:4043–4050

    PubMed  Google Scholar 

  • Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101:4500–4504

    Article  CAS  PubMed  Google Scholar 

  • Beyaert R, Heyninck K, Van Huffel S (2000) A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 60:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Booth JS, Griebel PJ, Babiuk LA, Mutwiri GK (2009) A novel regulatory B-cell population in sheep Peyer's patches spontaneously secretes IL-10 and downregulates TLR9-induced IFNalpha responses. Mucosal Immunol 2:265–275

    Article  CAS  PubMed  Google Scholar 

  • Booth JS, Arsenault R, Napper S, Griebel PJ, Potter AA, Babiuk LA, Mutwiri GK (2010) TLR9 signaling failure renders Peyer's patch regulatory B cells unresponsive to stimulation with CpG oligodeoxynucleotides. J Innate Immun (in press)

  • Borsutzky S, Kretschmer K, Becker PD, Muhlradt PF, Kirschning CJ, Weiss S, Guzman CA (2005) The mucosal adjuvant macrophage-activating lipopeptide-2 directly stimulates B lymphocytes via the TLR2 without the need of accessory cells. J Immunol 174:6308–6313

    CAS  PubMed  Google Scholar 

  • Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A (2003) The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 102:956–963

    Article  PubMed  Google Scholar 

  • Cario E, Podolsky DK (2005) Intestinal epithelial TOLLerance versus inTOLLerance of commensals. Mol Immunol 42:887–893

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Pozzetto B, Richard Y, Garraud O (2008) Identification of two subpopulations of purified human blood B cells, CD27- CD23+ and CD27high CD80+, that strongly express cell surface Toll-like receptor 9 and secrete high levels of interleukin-6. Immunology 125:430–437

    Article  CAS  PubMed  Google Scholar 

  • Creagh EM, O'Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  CAS  PubMed  Google Scholar 

  • Doetze A, Satoguina J, Burchard G, Rau T, Loliger C, Fleischer B, Hoerauf A (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12:623–630

    Article  CAS  PubMed  Google Scholar 

  • Douagi I, Gujer C, Sundling C, Adams WC, Smed-Sorensen A, Seder RA, Karlsson Hedestam GB, Lore K (2009) Human B cell responses to TLR ligands are differentially modulated by myeloid and plasmacytoid dendritic cells. J Immunol 182:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Gantner F, Hermann P, Nakashima K, Matsukawa S, Sakai K, Bacon KB (2003) CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur J Immunol 33:1576–1585

    Article  CAS  PubMed  Google Scholar 

  • Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938

    Article  CAS  PubMed  Google Scholar 

  • Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T (2007) TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol 178:7779–7786

    CAS  PubMed  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001a) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885

    CAS  PubMed  Google Scholar 

  • Gewirtz AT, Simon PO Jr, Schmitt CK, Taylor LJ, Hagedorn CH, O'Brien AD, Neish AS, Madara JL (2001b) Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 107:99–109

    Article  CAS  PubMed  Google Scholar 

  • Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, Vries JE de, Roncarolo MG (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742

    Article  CAS  PubMed  Google Scholar 

  • Gururajan M, Jacob J, Pulendran B (2007) Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2:e863

    Article  PubMed  Google Scholar 

  • Hanten JA, Vasilakos JP, Riter CL, Neys L, Lipson KE, Alkan SS, Birmachu W (2008) Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol 9:39

    Article  PubMed  Google Scholar 

  • Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bates EE (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950

    CAS  PubMed  Google Scholar 

  • Hausmann M, Kiessling S, Mestermann S, Webb G, Spottl T, Andus T, Scholmerich J, Herfarth H, Ray K, Falk W, Rogler G (2002) Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122:1987–2000

    Article  CAS  PubMed  Google Scholar 

  • He B, Qiao X, Cerutti A (2004) CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 173:4479–4491

    CAS  PubMed  Google Scholar 

  • He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerutti A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812–826

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Takeda K (2009) Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol 2:187–196

    Article  CAS  PubMed  Google Scholar 

  • Isnardi I, Ng YS, Srdanovic I, Motaghedi R, Rudchenko S, Bernuth H von, Zhang SY, Puel A, Jouanguy E, Picard C, Garty BZ, Camcioglu Y, Doffinger R, Kumararatne D, Davies G, Gallin JI, Haraguchi S, Day NK, Casanova JL, Meffre E (2008) IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 29:746–757

    Article  CAS  PubMed  Google Scholar 

  • Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, Pallier C, Lepajolec C, Mariette X (2008) Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol 38:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA Jr (2001) How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci USA 98:7461–7468

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Lederman MM, Harding CV, Rodriguez B, Mohner RJ, Sieg SF (2007) TLR9 stimulation drives naive B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol 37:2205–2213

    Article  CAS  PubMed  Google Scholar 

  • Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM (2002a) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM (2002b) A role for Toll in autoimmunity. Nat Immunol 3:423–424

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM, Vollmer J (2007) Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 220:251–269

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  CAS  PubMed  Google Scholar 

  • Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S, Cheever A, Jankovic D, Sher A (1998) Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect Immun 66:5157–5166

    CAS  PubMed  Google Scholar 

  • Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773

    CAS  PubMed  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S, Kagnoff M, Eckmann L, Ben-Neriah Y, Raz E (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Mo JH, Shen C, Rucker AN, Raz E (2007) Toll-like receptor signaling in intestinal epithelial cells contributes to colonic homoeostasis. Curr Opin Gastroenterol 23:27–31

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Gerth AJ, Peng SL (2004) CpG DNA redirects class-switching towards “Th1-like” Ig isotype production via TLR9 and MyD88. Eur J Immunol 34:1483–1487

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:7048–7053

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Ohnishi N, Ni L, Akira S, Bacon KB (2003) CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 4:687–693

    Article  CAS  PubMed  Google Scholar 

  • Malaspina A, Moir S, DiPoto AC, Ho J, Wang W, Roby G, O'Shea MA, Fauci AS (2008) CpG oligonucleotides enhance proliferative and effector responses of B cells in HIV-infected individuals. J Immunol 181:1199–1206

    CAS  PubMed  Google Scholar 

  • Mansson A, Adner M, Hockerfelt U, Cardell LO (2006) A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 118:539–548

    PubMed  Google Scholar 

  • Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176:705–710

    CAS  PubMed  Google Scholar 

  • Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–230

    Article  CAS  PubMed  Google Scholar 

  • Mueller T, Terada T, Rosenberg IM, Shibolet O, Podolsky DK (2006) Th2 cytokines down-regulate TLR expression and function in human intestinal epithelial cells. J Immunol 176:5805–5814

    CAS  PubMed  Google Scholar 

  • Nalubamba KS, Gossner AG, Dalziel RG, Hopkins J (2007) Differential expression of pattern recognition receptors in sheep tissues and leukocyte subsets. Vet Immunol Immunopathol 118:252–262

    Article  CAS  PubMed  Google Scholar 

  • Nemazee D, Gavin A, Hoebe K, Beutler B (2006) Immunology: Toll-like receptors and antibody responses. Nature 441:E4

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, Glass CK (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122:707–721

    Article  CAS  PubMed  Google Scholar 

  • Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286:G613–G626

    Article  CAS  PubMed  Google Scholar 

  • Palm NW, Medzhitov R (2009) Immunostimulatory activity of haptenated proteins. Proc Natl Acad Sci USA 106:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438:364–368

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, Hornung V, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2004) Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 103:3058–3064

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Pontarollo RA, Rankin R, Babiuk LA, Godson DL, Griebel PJ, Hecker R, Krieg AM, Drunen Littel-van den Hurk S van (2002) Monocytes are required for optimum in vitro stimulation of bovine peripheral blood mononuclear cells by non-methylated CpG motifs. Vet Immunol Immunopathol 84:43–59

    Article  CAS  PubMed  Google Scholar 

  • Rennick DM, Fort MM (2000) Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 278:G829–G833

    CAS  PubMed  Google Scholar 

  • Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM (2008) TLR agonists promote marginal zone B cell activation and facilitate T-dependent IgM responses. J Immunol 180:3882–3888

    CAS  PubMed  Google Scholar 

  • Rumio C, Besusso D, Palazzo M, Selleri S, Sfondrini L, Dubini F, Menard S, Balsari A (2004) Degranulation of Paneth cells via toll-like receptor 9. Am J Pathol 165:373–381

    CAS  PubMed  Google Scholar 

  • Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36:810–816

    Article  CAS  PubMed  Google Scholar 

  • Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, Sellers MT, Orenstein JM, Shimada T, Graham MF, Kubagawa H (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167:2651–2656

    CAS  PubMed  Google Scholar 

  • Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115:66–75

    CAS  PubMed  Google Scholar 

  • Sutmuller RP, Brok MH den, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494

    Article  CAS  PubMed  Google Scholar 

  • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  • Tasker L, Marshall-Clarke S (2003) Functional responses of human neonatal B lymphocytes to antigen receptor cross-linking and CpG DNA. Clin Exp Immunol 134:409–419

    Article  CAS  PubMed  Google Scholar 

  • Tretter T, Venigalla RK, Eckstein V, Saffrich R, Sertel S, Ho AD, Lorenz HM (2008) Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood 112:4555–4564

    Article  CAS  PubMed  Google Scholar 

  • Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19:837–847

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Karras JG, Colarusso TP, Foote LC, Rothstein TL (1997) Unmethylated CpG motifs protect murine B lymphocytes against Fas-mediated apoptosis. Cell Immunol 180:162–167

    Article  CAS  PubMed  Google Scholar 

  • Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK (2006) Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides. Int Rev Immunol 25:183–213

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Santini PA, Matthews AJ, Chiu A, Plebani A, He B, Chen K, Cerutti A (2008) Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol 181:276–287

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mutwiri.

Additional information

Research in the authors’ laboratory is funded by the Natural Sciences and Engineering Foundation, by Merial, and by the Alberta Agricultural Research Institute. This manuscript is published with the permission of the director of VIDO as journal series number 584.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, J., Wilson, H., Jimbo, S. et al. Modulation of B cell responses by Toll-like receptors. Cell Tissue Res 343, 131–140 (2011). https://doi.org/10.1007/s00441-010-1031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1031-3

Keywords

Navigation