Skip to main content
Log in

Leptin-sensitive OBP-expressing mucous cells in rat olfactory epithelium: a novel target for olfaction-nutrition crosstalk?

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although odorant-binding proteins (OBP) are one of the most abundant classes of proteins in the mammalian olfactory mucus, they have only recently been ascribed a functional role in the detection of odorants by olfactory neurons. Among the three OBPs described in the rat, OBP-1f is mainly secreted by the lateral nasal glands (LNG) and Bowman’s glands, and its expression is transcriptionally regulated by food deprivation in the olfactory mucosa, but not in LNG. Therefore, mucus composition might be locally regulated by hormones or molecules relevant to nutritional status. Our aim has been to investigate the mechanisms of such physiological regulation at the cellular level, through both the examination of OBP-1f synthesis sites in the olfactory mucosa and their putative regulation by leptin, a locally acting satiety hormone. Immunohistochemical observations have allowed the identification of a novel population of OBP-1f-secreting cells displaying morphological and functional characteristics similar to those of epithelial mucous cells. Ultrastructural analyses by both transmission and scanning electron microscopy has enabled a more complete cytoarchitectural characterization of these specialized olfactory mucous cells in their tissue environment. These globular cells are localized in discrete zones of the olfactory epithelium, mainly in the fourth turbinate, and are often scattered from the basal to the apical surface of the epithelium. They contain numerous small droplets of mucosubstances. Using an in-vitro-derived model of olfactory mucosa primary culture, we have been able to demonstrate that leptin increases the production of mucus by these cells, so that they constitute potential targets for the physiological modulation of mucus composition by nutritional cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BG:

Bowman’s glands

LNG:

lateral nasal gland

OBP:

odorant-binding protein

OE:

olfactory epithelium

OM:

olfactory mucosa

oMC:

olfactory mucous cell

OSN:

olfactory sensory neuron

PFA:

paraformaldehyde

PAS:

periodic-acid-Schiff

PB:

phosphate buffer

PBS:

phosphate-buffered saline

SEM:

scanning electron microscopy

References

  • Aragona P, Puzzolo D, Micali A, Ferreri G, Britti D (1998) Morphological and morphometric analysis on the rabbit conjunctival goblet cells in different hormonal conditions. Exp Eye Res 66:81–88

    Article  CAS  PubMed  Google Scholar 

  • Badonnel K, Denis JB, Caillol M, Monnerie R, Piumi F, Potier MC, Salesse R, Baly C (2007) Transcription profile analysis reveals that OBP-1f mRNA is downregulated in the olfactory mucosa following food deprivation. Chem Senses 32:697–710

    Article  CAS  PubMed  Google Scholar 

  • Baly C, Aioun J, Badonnel K, Lacroix MC, Durieux D, Schlegel C, Salesse R, Caillol M (2007) Leptin and its receptors are present in the rat olfactory mucosa and modulated by the nutritional status. Brain Res 1129:130–141

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom KS, Guttman JA, Rumi M, Ma C, Bouzari S, Khan MA, Gibson DL, Vogl AW, Vallance BA (2008) Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 76:796–811

    Article  CAS  PubMed  Google Scholar 

  • Bertmar G (1972) Scanning electron microscopy of olfactory rosette in sea trout. Z Zellforsch Mikrosk Anat 128:336–346

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Perez V, Remy JJ, Huet JC, Pernollet JC (2000) Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem 267:3079–3089

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    Article  CAS  PubMed  Google Scholar 

  • De Luca L, Schumacher M, Nelson DP (1971) Localization of the retinol-dependent fucose-glycopeptide in the goblet cell of the rat small intestine. J Biol Chem 246:5762–5765

    PubMed  Google Scholar 

  • Debat H, Eloit C, Blon F, Sarazin B, Henry C, Huet JC, Trotier D, Pernollet JC (2007) Identification of human olfactory cleft mucus proteins using proteomic analysis. J Proteome Res 6:1985–1996

    Article  CAS  PubMed  Google Scholar 

  • Decaens C, Nardelli J, Bara J, Burtin P (1993) Biochemical characterization of a rat oncofetal colonic antigen defined by a monoclonal antibody raised against gastric surface epithelium. Biochem J 293:531–536

    CAS  PubMed  Google Scholar 

  • Flower DR, North AC, Attwood TK (1993) Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 2:753–761

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Shirasu M, Sato K, Ebisui E, Touhara K, Mikoshiba K (2008) Decreased olfactory mucus secretion and nasal abnormality in mice lacking type 2 and type 3 IP3 receptors. Eur J Neurosci 27:2665–2675

    Article  PubMed  Google Scholar 

  • Getchell ML, Getchell TV (1992) Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc Res Tech 23:111–127

    Article  CAS  PubMed  Google Scholar 

  • Getchell TV, Kwong K, Saunders CP, Stromberg AJ, Getchell ML (2006) Leptin regulates olfactory-mediated behavior in ob/ob mice. Physiol Behav 87:848–856

    Article  CAS  PubMed  Google Scholar 

  • Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34:252–269

    Article  CAS  PubMed  Google Scholar 

  • Klaassen AB, Kuijpers W, Denuce JM (1981) Morphological and histochemical aspects of the nasal glands in the rat. Anat Anz 149:51–63

    CAS  PubMed  Google Scholar 

  • Kondo K, Watanabe K, Sakamoto T, Suzukawa K, Nibu K, Kaga K, Yamasoba T (2009) Distribution and severity of spontaneous lesions in the neuroepithelium and Bowman’s glands in mouse olfactory mucosa: age-related progression. Cell Tissue Res 335:489–503

    Article  CAS  PubMed  Google Scholar 

  • Kratzing JE (1984) The anatomy and histology of the nasal cavity of the koala (Phascolarctos cinereus). J Anat 138(Pt 1):55–65

    PubMed  Google Scholar 

  • Lacroix MC, Badonnel K, Meunier N, Tan F, Schlegel-Le Poupon C, Durieux D, Monnerie R, Baly C, Congar P, Salesse R, Caillol M (2008) Expression of insulin system in the olfactory epithelium: first approaches to its role and regulation. J Neuroendocrinol 20:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Leguen I, Cauty C, Odjo N, Corlu A, Prunet P (2007) Trout gill cells in primary culture on solid and permeable supports. Comp Biochem Physiol A Mol Integr Physiol 148:903–912

    Article  CAS  PubMed  Google Scholar 

  • Levasseur G, Baly C, Grebert D, Durieux D, Salesse R, Caillol M (2004) Anatomical and functional evidence for a role of arginine-vasopressin (AVP) in rat olfactory epithelium cells. Eur J Neurosci 20:658–670

    Article  PubMed  Google Scholar 

  • Martinez-Anton A, Debolos C, Garrido M, Roca-Ferrer J, Barranco C, Alobid I, Xaubet A, Picado C, Mullol J (2006) Mucin genes have different expression patterns in healthy and diseased upper airway mucosa. Clin Exp Allergy 36:448–457

    Article  CAS  PubMed  Google Scholar 

  • Matarazzo V, Zsurger N, Guillemot JC, Clot-Faybesse O, Botto JM, Dal Farra C, Crowe M, Demaille J, Vincent JP, Mazella J, Ronin C (2002) Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem Senses 27:691–701

    Article  CAS  PubMed  Google Scholar 

  • Menco BP, Farbman AI (1985) Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. I. Olfactory epithelium, qualitative studies. J Cell Sci 78:283–310

    CAS  PubMed  Google Scholar 

  • Millery J, Briand L, Bezirard V, Blon F, Fenech C, Richard-Parpaillon L, Quennedey B, Pernollet JC, Gascuel J (2005) Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus. Eur J Neurosci 22:1389–1399

    Article  PubMed  Google Scholar 

  • Nef P (1998) How we smell: the molecular and cellular bases of olfaction. News Physiol Sci 13:1–5

    CAS  PubMed  Google Scholar 

  • Nespoulous C, Briand L, Delage MM, Tran V, Pernollet JC (2004) Odorant binding and conformational changes of a rat odorant-binding protein. Chem Senses 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Takahashi S, Ushiki T (2004) Cytoarchitecture of the normal rat olfactory epithelium: light and scanning electron microscopic studies. Arch Histol Cytol 67:159–170

    Article  PubMed  Google Scholar 

  • Ohno K, Kawasaki Y, Kubo T, Tohyama M (1996) Differential expression of odorant-binding protein genes in rat nasal glands: implications for odorant-binding protein II as a possible pheromone transporter. Neuroscience 71:355–366

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29:199–228

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P (2001) The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 58:503–509

    Article  CAS  PubMed  Google Scholar 

  • Pes D, Mameli M, Andreini I, Krieger J, Weber M, Breer H, Pelosi P (1998) Cloning and expression of odorant-binding proteins Ia and Ib from mouse nasal tissue. Gene 212:49–55

    Article  CAS  PubMed  Google Scholar 

  • Pevsner J, Sklar PB, Snyder SH (1986) Odorant-binding protein: localization to nasal glands and secretions. Proc Natl Acad Sci USA 83:4942–4946

    Article  CAS  PubMed  Google Scholar 

  • Pevsner J, Hwang PM, Sklar PB, Venable JC, Snyder SH (1988) Odorant-binding protein and its mRNA are localized to lateral nasal gland implying a carrier function. Proc Natl Acad Sci USA 85:2383–2387

    Article  CAS  PubMed  Google Scholar 

  • Plaisancie P, Ducroc R, El Homsi M, Tsocas A, Guilmeau S, Zoghbi S, Thibaudeau O, Bado A (2006) Luminal leptin activates mucin-secreting goblet cells in the large bowel. Am J Physiol Gastrointest Liver Physiol 290:G805–G812

    Article  CAS  PubMed  Google Scholar 

  • Poon HF, Vaishnav RA, Butterfield DA, Getchell ML, Getchell TV (2005) Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J Neurochem 94:380–392

    Article  CAS  PubMed  Google Scholar 

  • Rogers DF (2003) The airway goblet cell. Int J Biochem Cell Biol 35:1–6

    Article  CAS  PubMed  Google Scholar 

  • Shatos MA, Rios JD, Horikawa Y, Hodges RR, Chang EL, Bernardino CR, Rubin PA, Dartt DA (2003) Isolation and characterization of cultured human conjunctival goblet cells. Invest Ophthalmol Vis Sci 44:2477–2486

    Article  PubMed  Google Scholar 

  • Shimomura S, Hisamatsu K, Fujii Y, Ohno S (1996) An ultrastructural study of goblet cells in rat nasal mucosa as revealed by the quick-freezing method. J Anat 188:651–659

    PubMed  Google Scholar 

  • Sorensen HB, Larsen PL, Tos M (2006) The influence of air current on goblet cell density in the mucosa of the normal uncinate process in the nasal cavity. Rhinology 44:188–192

    PubMed  Google Scholar 

  • Specian RD, Neutra MR (1980) Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J Cell Biol 85:626–640

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Takeda M, Obara N, Suzuki N, Takeichi N (2000) Olfactory epithelium consisting of supporting cells and horizontal basal cells in the posterior nasal cavity of mice. Cell Tissue Res 299:313–325

    Article  CAS  PubMed  Google Scholar 

  • Vidic J, Grosclaude J, Monnerie R, Persuy MA, Badonnel K, Baly C, Caillol M, Briand L, Salesse R, Pajot-Augy E (2008) On a chip demonstration of a functional role for odorant binding protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip 8:678–688

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Arizono N (2006) Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. Apmis 114:270–278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Bara (INSERM U482, Paris, France) for his generous gift of anti-MUC5AC (clone 660) antibody. We also thank C. Péchoux and T. Meylheuc of the MIMA2 platform (INRA, Jouy-en-Josas) for electron microscopy observations, UEAR (Jouy-en-Josas) for animal care, and Victoria Hawken (a native English speaker) for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Baly.

Additional information

This work was supported by a grant from the ANR (ANR-05-PNRA-1.E7 AROMALIM) and a sesame grant (A01947) from the “Ile-de-France” region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badonnel, K., Durieux, D., Monnerie, R. et al. Leptin-sensitive OBP-expressing mucous cells in rat olfactory epithelium: a novel target for olfaction-nutrition crosstalk?. Cell Tissue Res 338, 53–66 (2009). https://doi.org/10.1007/s00441-009-0846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0846-2

Keywords

Navigation