Skip to main content

Advertisement

Log in

Daunomycin accumulation and induction of programmed cell death in rat hair follicles

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM-positive matrix cells are detectable up to 48 h after injection and exhibit a characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late as 5 days postinjection in both the matrix and outer root sheath. Newly developed double-staining has shown that some of the DM-positive matrix cell nuclei are also TUNEL-positive. Staining for activated caspase-3 has demonstrated immunopositive cells following DM administration both in the matrix and in the outer root sheath. Ultrastructural immunocytochemistry has shown the presence of DM-positive cells with two different types of morphology. About half of the immunopositive cells exhibit a morphology typical of classical apoptosis (PCD type 1), whereas the other half show signs of autophagic cell death (PCD type 2). Interestingly, little, if any, DM accumulation or apoptosis has been detected in the dermal hair papillae. This may have a bearing on potential regeneration of the hair follicles. Thus, DM accumulates in a characteristic pattern in hair follicles. This accumulation is associated with the induction of two morphologically distinct forms of PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CYP:

Cyclophosphamide

DM:

Daunomycin

DOX:

Doxorubicin (adriamycin)

GA:

Glutaraldehyde

HRP:

Horseradish peroxidase

ICC:

Immunocytochemistry

mAb:

Monoclonal antibody

NGS:

Normal goat serum

pAb:

Polyclonal antibody

PBS:

Phosphate-buffered saline

PCD:

Programmed cell death

PFA:

Paraformaldehyde

RT:

Room temperature

TBS:

TRIS-buffered saline

TBST:

TBS containing 1% Triton X-100

TdT:

Terminal deoxynucleotidyl transferase

References

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  • Amoh Y, Li L, Katsuoka K, Hoffman RM (2007) Chemotherapy targets the hair-follicle vascular network but not the stem cells. J Invest Dermatol 127:11–15

    Article  PubMed  CAS  Google Scholar 

  • Anilkumar TV, Sarraf CE, Hunt T, Alison MR (1992) The nature of cytotoxic drug-induced cell death in murine intestinal crypts. Br J Cancer 65:552–558

    PubMed  CAS  Google Scholar 

  • Blum RH, Carter SK (1974) Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med 80:249–259

    PubMed  CAS  Google Scholar 

  • Bodó E, Tobin DJ, Kamenisch Y, Bíró T, Berneburg M, Funk W, Paus R (2007) Dissecting the impact of chemotherapy on the human hair follicle: a pragmatic in vitro assay for studying the pathogenesis and potential management of hair follicle dystrophy. Am J Pathol 171:1153–1167

    Article  PubMed  CAS  Google Scholar 

  • Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV (2000) p53 is essential for chemotherapy-induced hair loss. Cancer Res 60:5002–5006

    PubMed  CAS  Google Scholar 

  • Bristow MR (1982) Toxic cardiomyopathy due to doxorubicin. Hosp Pract 18:291–300

    Google Scholar 

  • Burke JF, Laucius JF, Brodovsky HS, Soriano RZ (1977) Doxorubicin hydrochloride-associated renal failure. Arch Intern Med 137:385–388

    Article  PubMed  Google Scholar 

  • Bursch W, Ellinger A, Gerner C, Fröhwein U, Schulte-Hermann R (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926:1–12

    PubMed  CAS  Google Scholar 

  • Cece R, Cazzaniga S, Morelli D, Sfondrini L, Bignotto M, Ménard S, Colnaghi MI, Balsari A (1996) Apoptosis of hair follicle cells during doxorubicin-induced alopecia in rats. Lab Invest 75:601–609

    PubMed  CAS  Google Scholar 

  • Chabner BA, Ryan DP, Paz-Ares L, Carbonero RG, Calabresi P (2001) Antineoplastic agents. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, p 1389

    Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cell residue in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Damavandi E, Hishikawa Y, Izumi S, Shin M, Koji T (2002) Involvement of Bax redistribution in the induction of germ cell apoptosis in neonatal mouse testis. Acta Histochem Cytochem 35:449–459

    Article  CAS  Google Scholar 

  • Dean JC, Salmon SE, Griffith KS (1979) Prevention of doxorubicin-induced hair loss with scalp hypothermia. N Engl J Med 301:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Dimarco A, Gaetani M, Dorigotti L, Soldati M, Bellini O (1963) Experimental studies of the antineoplastic activity of a new antibiotic daunomycin. Tumori 49:203–217

    PubMed  CAS  Google Scholar 

  • Egorin MJ, Hildebrand RC, Cimino EF, Bachur NR (1974) Cytofluorescence localization of adriamycin and daunorubicin. Cancer Res 34:2243–2245

    PubMed  CAS  Google Scholar 

  • Fujiwara K, Takatsu H, Tsukamoto K (2005) Immunocytochemistry for drugs containing an aliphatic amino group in the molecule, anticancer antibiotic daunomycin as a model. J Histochem Cytochem 53:467–474

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Shin M, Hougaard MH, Larsson L-I (2007) Distribution of anticancer antibiotic daunomycin in the rat heart and kidney revealed by immunocytochemistry using monoclonal antibodies. Histochem Cell Biol 127:69–77

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Gille L, Nohl H (1997) Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med 23:775–782

    Article  PubMed  CAS  Google Scholar 

  • Graham RC, Karnovsky MJ (1966) Glomerular permeability. Ultrastructural cytochemitry by a new technique. J Histochem Cytochem 14:291–302

    PubMed  CAS  Google Scholar 

  • Hendrix S, Handjiski B, Peters EM, Paus R (2005) A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol 125:42–51

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RM (2000) The hair follicle as a gene therapy target. Nat Biotechnol 18:20–21

    Article  PubMed  CAS  Google Scholar 

  • Ijiri K, Potten CS (1987) Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 55:113–123

    PubMed  CAS  Google Scholar 

  • Izumi S, Shin M, Hishikawa Y, Koji T (2001) Localization in situ of specific RNA by electron microscopy. Ital J Anat Embryol 106:45–50

    PubMed  CAS  Google Scholar 

  • Kligman AM (1959) The human hair cycle. J Invest Dermatol 33:307–316

    PubMed  CAS  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) Role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  • Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L, Keyomarsi K (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68:7966–7974

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Lindner G, Botchkarev VA, Botchkareva NV, Ling G, Veen C van der, Paus R (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151:1601–1617

    PubMed  CAS  Google Scholar 

  • Lu L, Wu W, Yan J, Li X, Yu H, Yu X (2008) Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. Int J Cardiol 134:82–90

    Article  PubMed  Google Scholar 

  • Ohara K, Shin M, Larsson L-I, Fujiwara K (2007a) Improved immunocytochemical detection of daunomycin. Histochem Cell Biol 127:603–608

    Article  PubMed  CAS  Google Scholar 

  • Ohara K, Shin M, Larsson L-I, Fujiwara K (2007b) Immunocytochemical studies on the distribution pattern of daunomycin in rat gastrointestinal tract. Histochem Cell Biol 128:285–290

    Article  PubMed  CAS  Google Scholar 

  • Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou G, Iliadis S, Botsoglou N, Dioudis C, Goulas A, Fletouris D, Dimitriadou-Vafiadou A (1998) Lipid peroxidation of rat myocardial tissue following daunomycin administration. Toxicology 126:83–91

    Article  PubMed  CAS  Google Scholar 

  • Paschoud N, Bignell C, Reinhold HS (1985) A double fluorescence method for detecting doxorubicin distribution and vascular supply in the mouse kidney. J Histochem Cytochem 33:73–76

    PubMed  CAS  Google Scholar 

  • Paus R, Rosenbach T, Haas N, Czarnetzki BM (1993) Pattern of cell death: the significance of apoptosis for dermatology. Exp Dermatol 2:3–11

    Article  PubMed  CAS  Google Scholar 

  • Paus R, Handjiski B, Eichmüller S, Czarnetzki BM (1994) Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 144:719–734

    PubMed  CAS  Google Scholar 

  • Pinkus H (1978) Epithelial-mesodermal interaction in normal growth, alpecia, and neoplasia. J Dermatol 5:93–101

    PubMed  Google Scholar 

  • Platel D, Bonorone-Adele S, Robert J (2001) Role of daunorubicinol in daunomycin-induced cardiotoxicity as evaluated with the model of isolated perfused rat heart. Pharmacol Toxicol 88:250–254

    Article  PubMed  CAS  Google Scholar 

  • Rutherford A, Willingham MC (1993) Ultrastructural localization of daunomycin in multidrug-resistant culture cells with modulation of the multidrug transpoter. J Histochem Cytochem 41:1573–1577

    PubMed  CAS  Google Scholar 

  • Seifert CF, Nesser ME, Thompson DF (1994) Dexrazoxane in the prevention of doxorubicin-induced cardiotoxicity. Ann Pharmacother 28:1063–1072

    PubMed  CAS  Google Scholar 

  • Selleri S, Arnaboldi F, Vizzotto L, Barsari A, Rumio C (2004) Epithelium-mesenchyme compartment interaction and oncosis on chemotherapy-induced hair domage. Lab Invest 84:140

    Article  CAS  Google Scholar 

  • Sharov AA, Li GZ, Palkina TN, Sharova TY, Gilchrest BA, Botchkarev VA (2003) Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss. J Invest Dermatol 120:27–35

    Article  PubMed  CAS  Google Scholar 

  • Sharov AA, Siebenhaar F, Sharova TY, Botchkareva NV, Gilchrest BA, Botchkarev VA (2004) Fas signaling is involved in the control of hair follicle response to chemotherapy. Cancer Res 64:6266–6270

    Article  PubMed  CAS  Google Scholar 

  • Skladanowski A, Konopa J (1993) Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumor cells. Biochem Pharmacol 46:375–382

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Paus R, Plonka P, Handjiski B, Maurer M, Chakraborty A, Mihm MC Jr (1996) Pharmacological disruption of hair follicle pigmentation by cyclophosphamide as a model for studying the melanocyte response to and recovery from cytotoxic drug damage in situ. J Invest Dermatol 106:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Bachur NR (1975) Daunorubicin metabolites in human urine. J Pharmacol Exp Ther 195:41–49

    Google Scholar 

  • Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvment of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461

    Article  PubMed  CAS  Google Scholar 

  • Thakkar NS, Potten CS (1992) Abrogation of adriamycin toxicity in vivo by cycloheximide. Biochem Pharmacol 43:1683–1691

    Article  PubMed  CAS  Google Scholar 

  • Thakkar NS, Potten CS (1993) Inhibition of doxorubicin-induced apoptosis in vivo by 2-deoxy-D-glucose. Cancer Res 53:2057–2060

    PubMed  CAS  Google Scholar 

  • Tobin DJ, Hagen E, Botchkarev VA, Paus R (1998) Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? J Invest Dermatol 111:941–947

    Article  PubMed  CAS  Google Scholar 

  • Tobin DJ, Gunin A, Magerl M, Paus R (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth and hair follicle transformations. J Invest Dermatol Symp Proc 8:80–86

    Article  Google Scholar 

  • Van Scoot EJ, Ekel TM (1958) Geometric relationships between the matrix of the hair bulb and its dermal papilla in normal and alopecia scalp. J Invest Dermatol 31:281–287

    Google Scholar 

  • Willingham MC, Cornwell MM, Cardarelli CO, Gottesman MM, Pastan I (1986) Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and sensitive KB cells: effects of verapamil and other drugs. Cancer Res 46:5941–5946

    PubMed  CAS  Google Scholar 

  • Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, You A, Hayashi Y, Georgescu M-M, Kondo Y, Kondo S, Ohyashiki K (2008) Vitamin K12 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy 4:629–640

    PubMed  CAS  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Zagotto G, Gatto B, Moro S, Sissi C, Palumbo M (2001) Anthracyclines: recent developments in their separation and quantification. J Chromatogr B Biomed Sci Appl 764:161–171

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Clark JR, Herman EH, Ferrans VJ (1996) Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol 28:1931–1943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to K. Ohara, Y. Tamamura and K. Tanaka for their technical assistance throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, M., Larsson, LI., Hougaard, D.M. et al. Daunomycin accumulation and induction of programmed cell death in rat hair follicles. Cell Tissue Res 337, 429–438 (2009). https://doi.org/10.1007/s00441-009-0840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0840-8

Keywords

Navigation