Skip to main content

Advertisement

Log in

Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

One of the major roles of Sertoli cells is to establish the blood-testis (Sertoli cell) barrier (BTB), which is permanently assembled and disassembled to accommodate the translocation of leptotene spermatocytes from the basal into the adluminal compartment of the seminiferous epithelium and to guarantee completion of meiosis and spermiogenesis. Recently, we have demonstrated spermatogenesis to be arrested before spermatid elongation in Gnpat-null mice with selective deficiency of ether lipids (ELs) whose functions are poorly understood. In this study, we have focused on the spatio-temporal expression of several BTB tight-junctional proteins in the first wave of spermatogenesis to obtain insights into the physiological role of ELs during BTB establishment and dynamics. Our data confirm the transient existence of Russell’s intermediate or translocation compartment delineated by two separate claudin-3-positive luminal and basal tight junctions and reveal that EL deficiency blocks BTB remodeling. This block is associated with (1) downregulation and mistargeting of claudin-3 and (2) impaired BTB disassembly resulting in deficient sealing of the intermediate compartment as shown by increased BTB permeability to biotin. These results suggest that ELs are essential for cyclic BTB dynamics ensuring the sluice mechanism for leptotene translocation into the adluminal compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AR:

androgen receptor

BTB:

blood-testis barrier

CAR:

coxsackie virus/adenovirus receptor

CK18:

cytokeratin 18

Cldn3:

claudin-3

Cldn11:

oligodendrocyte-specific protein/claudin-11

DA-GPE:

diacyl-glycerophosphorylethanolamine

ELs:

ether lipids

GalEAG:

precursor/degradative product of seminolipid

Gnpat (DAPAT):

dihydroxyacetonephosphate acyltransferase

PEs:

phosphatidylethanolamines

PlmGPEs:

plasmenyl-glycerophosphorylethanolamines, plasmenylethanolamines

PLs:

plasmalogens

SCARCO:

Sertoli-cell-selective androgen receptor knockout

SGalAAG:

seminolipid (3-sulfogalactosyl-1-alkyl-2-acyl-sn-glycerol, galactosylalkylacylglycerol (GalEAG) I3-sulfate)

TJs:

tight junctions

References

  • Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O’Shaughnessy PJ (2008) Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149:3279–3285

    Article  PubMed  CAS  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  PubMed  CAS  Google Scholar 

  • Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74:68–85

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorsi L, Nosi D, Quercioli F, Formigli L, Zecchi S, Maggi M, Forti G, Baldi E (2008) Prostate cancer: a model of integration of genomic and non-genomic effects of the androgen receptor in cell lines model. Steroids 73:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    PubMed  CAS  Google Scholar 

  • Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Cavicchia JC, Sacerdote FL (1988) Topography of the rat blood-testis barrier after intratubular administration of intercellular tracers. Tissue Cell 20:577–586

    Article  PubMed  CAS  Google Scholar 

  • Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, Primig M (2007) The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci USA 104:8346–8351

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA 101:6876–6881

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Merzdorf C, Paul DL, Goodenough DA (1997) COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J Cell Biol 138:891–899

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Watkins SC, Walker WH (2007) Testosterone activates mitogen-activated protein kinase via Src kinase and the epidermal growth factor receptor in Sertoli cells. Endocrinology 148:2066–2074

    Article  PubMed  CAS  Google Scholar 

  • Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600

    Article  PubMed  CAS  Google Scholar 

  • Cinar B, Mukhopadhyay NK, Meng G, Freeman MR (2007) Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem 282:29584–29593

    Article  PubMed  CAS  Google Scholar 

  • De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lecureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 101:1327–1332

    Article  PubMed  Google Scholar 

  • De Gendt K, Atanassova N, Tan KA, Franca LR de, Parreira GG, McKinnell C, Sharpe RM, Saunders PT, Mason JI, Hartung S, Ivell R, Denolet E, Verhoeven G (2005) Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 146:4117–4126

    Article  PubMed  Google Scholar 

  • Denolet E, De Gendt K, Allemeersch J, Engelen K, Marchal K, Van Hummelen P, Tan KA, Sharpe RM, Saunders PT, Swinnen JV, Verhoeven G (2006) The effect of a Sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 20:321–334

    Article  PubMed  CAS  Google Scholar 

  • Diagne A, Fauvel J, Record M, Chap H, Douste-Blazy L (1984) Studies on ether phospholipids. II. Comparative composition of various tissues from human, rat and guinea pig. Biochim Biophys Acta 793:221–231

    PubMed  CAS  Google Scholar 

  • Fellmann P, Herve P, Devaux PF (1993) Transmembrane distribution and translocation of spin-labeled plasmalogens in human red blood cells. Chem Phys Lipids 66:225–230

    Article  PubMed  CAS  Google Scholar 

  • Freeman MR, Cinar B, Kim J, Mukhopadhyay NK, Di Vizio D, Adam RM, Solomon KR (2007) Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes. Steroids 72:210–217

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H, Tadano-Aritomi K, Tokumasu A, Ito K, Hikita T, Suzuki K, Ishizuka I (2000) Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: ceramide galactosyltransferase-deficient mice. J Biol Chem 275:22623–22626

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Goetz P, Chandley AC, Speed RM (1984) Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J Cell Sci 65:249–263

    PubMed  CAS  Google Scholar 

  • Gorgas K (1985) Serial section analysis of mouse hepatic peroxisomes. Anat Embryol (Berl) 172:21–32

    Article  CAS  Google Scholar 

  • Gorgas K, Teigler A, Komljenovic D, Just WW (2006) The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 1763:1511–1526

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659

    Article  PubMed  CAS  Google Scholar 

  • Guttman JA, Takai Y, Vogl AW (2004) Evidence that tubulobulbar complexes in the seminiferous epithelium are involved with internalization of adhesion junctions. Biol Reprod 71:548–559

    Article  PubMed  CAS  Google Scholar 

  • Helmy FM, Nosavanh L, Haynes H, Juracka A (2008) Phospholipid profile of rat testis, its unique high level of monolysocardiolipin and its lipolytic capabilities in vitro. A chromatographic analysis. Cell Biochem Funct 26:434–442

    Article  PubMed  CAS  Google Scholar 

  • Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131:459–467

    Article  PubMed  CAS  Google Scholar 

  • Honsho M, Yagita Y, Kinoshita N, Fujiki Y (2008) Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: localization and transport of plasmalogens to post-Golgi compartments. Biochim Biophys Acta 1783:1857–1865

    Article  PubMed  CAS  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  PubMed  CAS  Google Scholar 

  • Jarow JP, Zirkin BR (2005) The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann N Y Acad Sci 1061:208–220

    Article  PubMed  CAS  Google Scholar 

  • Jordan K, Chodock R, Hand AR, Laird DW (2001) The origin of annular junctions: a mechanism of gap junction internalization. J Cell Sci 114:763–773

    PubMed  CAS  Google Scholar 

  • Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096

    Article  PubMed  CAS  Google Scholar 

  • Koval M (2006) Claudins—key pieces in the tight junction puzzle. Cell Commun Adhes 13:127–138

    Article  PubMed  CAS  Google Scholar 

  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    PubMed  CAS  Google Scholar 

  • Lambert D, O’Neill CA, Padfield PJ (2007) Methyl-beta-cyclodextrin increases permeability of Caco-2 cell monolayers by displacing specific claudins from cholesterol rich domains associated with tight junctions. Cell Physiol Biochem 20:495–506

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    Article  PubMed  CAS  Google Scholar 

  • Lui WY, Lee WM (2006) Regulation of junction dynamics in the testis—transcriptional and post-translational regulations of cell junction proteins. Mol Cell Endocrinol 250:25–35

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Kubo A, Furuse M, Tsukita S (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE (2005) Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci USA 102:16696–16700

    Article  PubMed  CAS  Google Scholar 

  • Mirza M, Petersen C, Nordqvist K, Sollerbrant K (2007) Coxsackievirus and adenovirus receptor is up-regulated in migratory germ cells during passage of the blood-testis barrier. Endocrinology 148:5459–5469

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999) Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145:579–588

    Article  PubMed  CAS  Google Scholar 

  • Mruk DD, Cheng CY (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  PubMed  CAS  Google Scholar 

  • Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  PubMed  CAS  Google Scholar 

  • Nebel BR, Amarose AP, Hacket EM (1961) Calendar of gametogenic development in the prepuberal male mouse. Science 134:832–833

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282:22278–22288

    Article  PubMed  CAS  Google Scholar 

  • Pelletier RM (1988) Cyclic modulation of Sertoli cell junctional complexes in a seasonal breeder: the mink (Mustela vison). Am J Anat 183:68–102

    Article  PubMed  CAS  Google Scholar 

  • Pelletier RM, Friend DS (1983) The Sertoli cell junctional complex: structure and permeability to filipin in the neonatal and adult guinea pig. Am J Anat 168:213–228

    Article  PubMed  CAS  Google Scholar 

  • Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM (2007) Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell 18:337–347

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ, Han X, Chung KN, Gross RW (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280:26796–26804

    Article  PubMed  CAS  Google Scholar 

  • Post JA, Verkleij AJ, Roelofsen B, Op de Kamp JA (1988) Plasmalogen content and distribution in the sarcolemma of cultured neonatal rat myocytes. FEBS Lett 240:78–82

    Article  PubMed  CAS  Google Scholar 

  • Rabionet M, Spoel AC van der, Chuang CC, Tumpling-Radosta B von, Litjens M, Bouwmeester D, Hellbusch CC, Korner C, Wiegandt H, Gorgas K, Platt FM, Grone HJ, Sandhoff R (2008) Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J Biol Chem 283:13357–13369

    Article  PubMed  CAS  Google Scholar 

  • Rahman F, Christian HC (2007) Non-classical actions of testosterone: an update. Trends Endocrinol Metab 18:371–378

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 2006:re14

    Article  PubMed  Google Scholar 

  • Rhyu IJ, Abbott LC, Walker DB, Sotelo C (1999a) An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg(la)/tg(la)) and compound heterozygous tottering/leaner (tg/tg(la)) mice. Neuroscience 90:717–728

    Article  PubMed  CAS  Google Scholar 

  • Rhyu IJ, Oda S, Uhm CS, Kim H, Suh YS, Abbott LC (1999b) Morphologic investigation of rolling mouse Nagoya (tg(rol)/tg(rol)) cerebellar Purkinje cells: an ataxic mutant, revisited. Neurosci Lett 266:49–52

    Article  PubMed  CAS  Google Scholar 

  • Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12:1881–1895

    Article  PubMed  CAS  Google Scholar 

  • Russell L (1977) Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 148:313–328

    Article  PubMed  CAS  Google Scholar 

  • Russell LD (1979) Observations on the inter-relationships of Sertoli cells at the level of the blood-testis barrier: evidence for formation and resorption of Sertoli-Sertoli tubulobulbar complexes during the spermatogenic cycle of the rat. Am J Anat 155:259–279

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Ettlin RA, Hikim APS, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River, St. Louis

    Google Scholar 

  • Salaun C, Gould GW, Chamberlain LH (2005) The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells. Regulation by distinct cysteine-rich domains. J Biol Chem 280:1236–1240

    Article  PubMed  Google Scholar 

  • Sandhoff R, Hepbildikler ST, Jennemann R, Geyer R, Gieselmann V, Proia RL, Wiegandt H, Grone HJ (2002) Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J Biol Chem 277:20386–20398

    Article  PubMed  CAS  Google Scholar 

  • Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 100:12201–12206

    Article  PubMed  CAS  Google Scholar 

  • Shima JE, McLean DJ, McCarrey JR, Griswold MD (2004) The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 71:319–330

    Article  PubMed  CAS  Google Scholar 

  • Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  PubMed  CAS  Google Scholar 

  • Smotrys JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587

    Article  PubMed  CAS  Google Scholar 

  • Surviladze Z, Harrison KA, Murphy RC, Wilson BS (2007) FcepsilonRI and Thy-1 domains have unique protein and lipid compositions. J Lipid Res 48:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Tadano-Aritomi K, Matsuda J, Fujimoto H, Suzuki K, Ishizuka I (2003) Seminolipid and its precursor/degradative product, galactosylalkylacylglycerol, in the testis of saposin A- and prosaposin-deficient mice. J Lipid Res 44:1737–1743

    Article  PubMed  CAS  Google Scholar 

  • Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, Kano M, Murata Y (2007) Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol 67:909–923

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134:523–534

    Article  PubMed  CAS  Google Scholar 

  • Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PT, Denolet E, Verhoeven G (2005) The role of androgens in Sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 146:2674–2683

    Article  PubMed  CAS  Google Scholar 

  • Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum.Hum Mol Genet 18:1897-1908

    Article  PubMed  CAS  Google Scholar 

  • Tsai MY, Yeh SD, Wang RS, Yeh S, Zhang C, Lin HY, Tzeng CR, Chang C (2006) Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci USA 103:18975–18980

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  PubMed  CAS  Google Scholar 

  • Vaid KS, Guttman JA, Babyak N, Deng W, McNiven MA, Mochizuki N, Finlay BB, Vogl AW (2007) The role of dynamin 3 in the testis. J Cell Physiol 210:644–654

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Gambling TM, Carson JL, Anderson JM (2005) Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci 118:1427–1436

    Article  PubMed  Google Scholar 

  • Wang CQ, Mruk DD, Lee WM, Cheng CY (2007) Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Exp Cell Res 313:1373–1392

    Article  PubMed  CAS  Google Scholar 

  • Wang RS, Yeh S, Chen LM, Lin HY, Zhang C, Ni J, Wu CC, Sant’Agnese PA di, deMesy-Bentley KL, Tzeng CR, Chang C (2006) Androgen receptor in Sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology 147:5624–5633

    Article  PubMed  CAS  Google Scholar 

  • Wong CH, Cheng CY (2005) The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol 71:263–296

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Lin HY, Yeh SD, Yu IC, Wang RS, Chen YT, Zhang C, Altuwaijri S, Chen LM, Chuang KH, Chiang HS, Yeh S, Chang C (2007) Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrinology 32:96–106

    CAS  Google Scholar 

  • Zhang Y, Hayashi Y, Cheng X, Watanabe T, Wang X, Taniguchi N, Honke K (2005) Testis-specific sulfoglycolipid, seminolipid, is essential for germ cell function in spermatogenesis. Glycobiology 15:649–654

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, Hess RA (2002) Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 23:870–881

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Ingrid Kuhn-Krause is gratefully acknowledged. We thank Sven Weimann, Rolf Nonnenmacher, and Dr. Andreas Schober for help with the preparation of the figures, and Dr. Manuela Simoni, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany (present address: University of Modena and Reggio Emilia, Department of Medicine,Endocrinology, and Metabolism, 41100 Modena, Italy) for the determination of intratesticular testosterone and follicle-stimulating hormone levels. We are also grateful to Dr. Britta Brügger for making the triple Quadrupole nano-electrospray-ionization tandem mass spectrometry available to us.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger Sandhoff, Wilhelm W. Just or Karin Gorgas.

Additional information

This work was supported by the German Research Foundation (grants Go 432/2-1, Ju 166/3-1, and Sa 172/1-1).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Mass spectrometric signal intensities of PlmGPEs (red) and DA-GPEs (green) in percent of total DA-GPE signal intensities in wild-type (WT) and mutant (KO) testis. A roughly seven-fold relative increase of the major testicular plasmenylethanolamines (PlmGPEs) as compared with diacyl-glycerophosphorylethanolamines (DA-GPEs) from postnatal day 6 (P6) to P30 could be detected, as could the complete loss of PlmGPEs in Gnpat-/- testis, taking the most abundant PlmGPEs (38:5 and 38:4; m/z 750 and 752) into more detailed consideration. The faint signals of PlmGPE species were within or slightly above background noise. T-test (two-tailed type 3 t-test); n.s not significant, *P<0.05, **P<0.01, ***P<0.001 (DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komljenovic, D., Sandhoff, R., Teigler, A. et al. Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 337, 281–299 (2009). https://doi.org/10.1007/s00441-009-0809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0809-7

Keywords

Navigation