Skip to main content

Advertisement

Log in

Cultured gastrointestinal smooth muscle cells: cell response to contractile agonists depends on their phenotypic state

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the digestive tract, the transit of ingested food induces a local contraction-relaxation reflex of which the smooth muscle cell (SMC) represents the functional unit. Although freshly isolated SMCs have been extensively used for in vitro studies, in specific cases cultured cells appear necessary. Because conventionally cultured SMCs lose their contractile properties, we have developed: (1) differentiated, contractile rabbit gastric SMCs (D-stim cells), cultured in a medium supplemented with insulin, and (2) proliferative, dedifferentiated rabbit gastric SMCs (P-stim cells), cultured in a medium supplemented with insulin, fetal serum, EGF and b-FGF. The proliferative index was 5±4% and 82±10%, respectively, for D-stim and P-stim cells. Expression of SM-myosin heavy chain was observed in 90% of D-stim cells, whereas it was progressively lost in P-stim cells. Carbachol (1–100 nM), glicentin (2 nM) and gastrin-17 (100 nM) induced contraction of D-stim cells cultured for 3 or 6 days, whereas they did not induce the contraction of P-stim cells; in contrast, gastrin-17 (10 nM) was able to stimulate DNA synthesis (1.86±0.09-fold increase) in P-stim cells. The coupling of muscarinic receptors to intracellular transduction pathways was evaluated in D-stim cells: at day 3, carbachol (100 nM) induced a twofold increase in the production of inositol tri-tetra-phosphates; in parallel, a phosphorylation of ERK MAP kinases occurred within 1 min of carbachol stimulation. In conclusion, cultured functional myocytes derived from mature tissue may be used for long-term studies concerning the events coupled either to proliferation or to motility regulation of differentiated SMCs due to the activation of G-protein-coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A–D
Fig. 3A, B
Fig. 4
Fig. 5A, B
Fig. 6A, B
Fig. 7
Fig. 8
Fig. 9A, B

Similar content being viewed by others

References

  • Abdel-Latif AA (2001) Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle. Exp Biol Med 226:153–163

    CAS  Google Scholar 

  • Bodin P, Richard S, Travo C, Berta P, Stoclet JC, Papin S, Travo P (1991) Responses of subculture rat aortic smooth muscle myocytes to vasoactive agents and KCl-induced depolarisation. Am J Physiol Cell Physiol 260:C151–C158

    CAS  Google Scholar 

  • Borrione AC, Zanellato AMC, Scannapieco G, Pauletto P, Sartore S (1989) Myosin heavy chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 183:413–417

    CAS  PubMed  Google Scholar 

  • Bowers CW, Dahm LM (1993) Maintenance of contractility in dissociated smooth muscle: low-density cultures in a defined medium. Am J Physiol 264:C229–C236

    CAS  PubMed  Google Scholar 

  • Brittingham J, Phiel C, Trzyna WC, Gabbeta V, Mchugh KM (1998) Identification of distinct molecular phenotypes in cultured gastrointestinal smooth muscle cells. Gastroenterology 115:605–617

    CAS  PubMed  Google Scholar 

  • Browning CL, Culberson DE, Aragon IV, Fillmore RA, Croissant JD, Schwartz RJ, Zimmer WE (1998) The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev Biol 194:18–37

    Article  CAS  PubMed  Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    CAS  PubMed  Google Scholar 

  • Cook AK, Carty M, Singer CA, Yamboliev IA, Gerthoffer WT (2000) Coupling of M(2) muscarinic receptors to ERK MAP kinases and caldesmon phosphorylation in colonic smooth muscle. Am J Physiol 278:G429–G437

    CAS  PubMed  Google Scholar 

  • Cuq P, Zumbihl R, Fisher T, Rouot B, Bali JP, Magous R (1996) Gαq/11 couples muscarinic receptors to phospholipase C activation and cell contraction in circular smooth muscle from the rabbit caecum. Eur J Pharmacol 315:213–219

    CAS  PubMed  Google Scholar 

  • Daulhac L, Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C (1997) Ca2+ and protein kinase C-dependent mechanisms involved in gastrin-induced Shc/Grb2 complex formation and P44-mitogen-activated protein kinase activation. Biochem J 325:383–389

    CAS  PubMed  Google Scholar 

  • Drew JS, Murphy RA (1997) Actin isoforms expression, cellular heterogeneity and contractile function in smooth muscle. Can J Physiol Pharmacol 75:869–877

    CAS  PubMed  Google Scholar 

  • Eddinger TJ, Murphy RA (1991) Developmental changes in actin and myosin heavy chain expression in smooth muscle. Arch Biochem Biophys 284:232–237

    CAS  PubMed  Google Scholar 

  • Ennes HS, McRoberts JA, Hyman PE, Snape WJ Jr (1992) Characterisation of colonic circular smooth muscle cells in culture. Am J Physiol 263:G365–G370

    CAS  PubMed  Google Scholar 

  • Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B (2000) Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol 279:C529–C539

    CAS  Google Scholar 

  • Gerthoffer WT, Yamboliev IA, Pohl J, Haynes R, Dang S, McHugh KM (1997) Activation of MAP kinases in airway smooth muscle. Am J Physiol 272:L244–L252

    CAS  PubMed  Google Scholar 

  • Gorenne I, Su X, Moreland RS (1998) Inhibition of p42 and p44 MAP kinase does not alter smooth muscle contraction in swine carotid artery. Am J Physiol 275:H131–H138

    CAS  PubMed  Google Scholar 

  • Gutkind JS (2000) Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 40:RE1

    Google Scholar 

  • Halayko AJ, Rector E, Stephens NL (1997) Characterization of molecular determinants of smooth muscle cell heterogeneity. Can J Physiol Pharmacol 75:917–929

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K (1998) Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 273:28860–28867

    Article  CAS  PubMed  Google Scholar 

  • Hedges JC, Oxhorn BC, Carty M, Adam LP, Yamboliev IA, Gerthoffer WT (2000) Phosphorylation of caldesmon by ERK MAP kinases in smooth muscle. Am J Physiol 278:C718–C726

    CAS  Google Scholar 

  • Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107:307–319

    CAS  PubMed  Google Scholar 

  • Hirst S (1996) Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J 9:808–820

    Article  CAS  PubMed  Google Scholar 

  • Iijima M, Aoki K, Aizawa H, Ohata H, Momose K (1998) Contractile protein isoforms of single and cultured smooth muscle cells from guinea pig ileum. J Smooth Muscle Res 34:193–205

    CAS  PubMed  Google Scholar 

  • Kashiwada K, Nishida W, Hayashi K, Ozawa K, Yamanaka Y, Saga H, Yamashita T, Tohyama M, Shimada S, Sato K, Sobue K (1997) Coordinate expression of alpha-tropomyosin and caldesmon isoforms in association with phenotypic modulation of smooth muscle cells. J Biol Chem 272:15396–15404

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Blennerhassett MG, Kataeva GV, Collins SM (1995) Interleukin 1beta induces the expression of interleukin 6 in rat intestinal smooth muscle cells. Gastroenterology 108:1720–1728

    CAS  PubMed  Google Scholar 

  • Kirk CJ, Guillon G, Ballestre MN, Jard S (1986) Stimulation by vasopressin and other agonists of inositol-lipid breakdown and inositol phosphate accumulation in WRK1 cells. Biochem J 240:197–204

    CAS  PubMed  Google Scholar 

  • Koh TJ, Goldenring JR, Ito S, Mashimo H, Kopin AS, Varro A, Dockray GJ, Wang TC (1997) Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 113:1015–1025

    CAS  PubMed  Google Scholar 

  • Kuemmerle JF (1997) Autocrine regulation of growth in cultured human intestinal muscle by growth factors. Gastroenterology 113:817–824

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lee CH, Park D, Wu D, Rhee SG, Simon MI (1992) Members of the Gq alpha sub-unit gene family activate phospholipase b isozymes. J Biol Chem 267:16044–16047

    CAS  PubMed  Google Scholar 

  • Lees D, Fabbrizio E, Mornet D, Pugnere D, Travo P (1995) Parallel expression level of dystrophin and contractile performances of rat aortic smooth muscle. Exp Cell Res 218:401–404

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Shyr MH, Chien CS, Wang CC, Chiu CT, Hsiao LD, Yang CM (2002) Thrombin-stimulated cell proliferation mediated through activation of Ras/Raf/MEK/MAPK pathway in canine cultured tracheal smooth muscle cells. Cell Signal 14:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lymn JS, Hughes AD (2000) Phospholipase C isoforms, cytoskeletal organisation and vascular smooth muscle differentiation. News Physiol Sci 15:41–45

    CAS  PubMed  Google Scholar 

  • Moummi C, Magous R, Bali JP (1989) Gastrointestinal hormone receptors on isolated smooth muscle cells from gastric antrum of the rabbit. Biochem Pharmacol 38:2895–2901

    Article  CAS  PubMed  Google Scholar 

  • Murray TR, Marshall BE, Macarak EJ (1990) Contraction of vascular smooth muscle cell in culture. J Cell Physiol 143:26–38

    CAS  PubMed  Google Scholar 

  • Murthy KS, Makhlouf GM (1991) Phosphoinositide metabolism in intestinal smooth muscle: preferential production of Ins(1, 4, 5)P3 in circular muscle cells. Am J Physiol 261:G945–G951

    CAS  PubMed  Google Scholar 

  • Murthy KS, Makhlouf GM (1995) Functional characterisation of phosphoinositide specific phospholipase C-b1 and b3 in intestinal smooth muscle. Am J Physiol 269:C969–C978

    CAS  PubMed  Google Scholar 

  • Oishi K, Itoh Y, Isshiki Y, Kai C, Takeda Y, Yamaura K, Takano-Ohmuro H, Uchida MK (2000) Agonist-induced isometric contraction of smooth muscle cell-populated collagen gel fiber. Am J Physiol Cell Physiol 279:C1432–C1442

    CAS  PubMed  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    CAS  PubMed  Google Scholar 

  • Prinz C, Scott DR, Hurwitz D, Helander HF, Sachs G (1994) Gastrin effects on isolated rat enterochromaffin-like cells in primary culture. Am J Physiol 267:G663–G675

    CAS  PubMed  Google Scholar 

  • Rodier G, Magous R, Mochizuki T, Le Nguyen D, Martinez J, Bali JP, Bataille D, Jarrousse C (1999) Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinology 140:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sartore S, Chiavegato A, Franch R, Faggin E, Pauletto P (1997) Myosin gene expression and cell phenotypes in vascular smooth muscle during development, in experimental models, and in vascular disease. Arterioscler Thromb Vasc Biol 17:1210–1215

    CAS  PubMed  Google Scholar 

  • Seva C, Dickinson CJ, Yamada T (1994) Growth-promoting effects of glycine-extended progastrin. Science 265:410–412

    CAS  PubMed  Google Scholar 

  • Shin CY, Lee YP, Lee TS, Je HD, Kim DS, Sohn UD (2002) The signal transduction of endothelin-1 induced circular smooth muscle contraction in cat esophagus. J Pharmacol Exp Ther 302:924–934

    Article  CAS  PubMed  Google Scholar 

  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    CAS  PubMed  Google Scholar 

  • Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidyl inositol specific phospholipase C b by G protein alpha and beta-gamma subunits. J Biol Chem 268:9667–9674

    CAS  PubMed  Google Scholar 

  • Solway J, Forsythe SM, Halayako AJ, Vieira JE, Hershenson MB, Camoretti-Mercado B (1998) Transcriptional regulation of smooth muscle contractile apparatus expression. Am J Respir Crit Care Med 158:S100–S108

    CAS  PubMed  Google Scholar 

  • Thyberg J (1996) Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol 169:183–265

    CAS  PubMed  Google Scholar 

  • Thyberg J, Hultgardh-Nilsson A (1994) Fibronectin and the basement membrane components laminin and collagen IV influence the phenotypic properties of sub-cultured rat aortic smooth muscle cells differently. Cell Tissue Res 276:263–271

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 79:4350–4354

    Google Scholar 

  • Van Assche G, Barbara G, Deng Y, Lovato P, Gauldie J, Collins SM (1999) Neurotransmitters modulate cytokine-stimulated interleukin-6 secretion in rat intestinal smooth muscle cells. Gastroenterology 116:346–353

    PubMed  Google Scholar 

  • Yamamoto M, Yamamoto K, Noumura T (1993) Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp Cell Res 204:121–129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Magous.

Additional information

This study was supported in part by grants from the AFM (Association Française contre les Myopathies).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarrousse, C., Lods, N., Michel, F. et al. Cultured gastrointestinal smooth muscle cells: cell response to contractile agonists depends on their phenotypic state. Cell Tissue Res 316, 221–232 (2004). https://doi.org/10.1007/s00441-004-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0859-9

Keywords

Navigation