Skip to main content
Log in

Random walks among time increasing conductances: heat kernel estimates

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

For any graph having a suitable uniform Poincaré inequality and volume growth regularity, we establish two-sided Gaussian transition density estimates and parabolic Harnack inequality, for constant speed continuous time random walks evolving via time varying, uniformly elliptic conductances, provided the vertex conductances (i.e. reversing measures), increase in time. Such transition density upper bounds apply for discrete time uniformly lazy walks, with the matching lower bounds holding once the parabolic Harnack inequality is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, G., Benjamini, I., Gurel-Gurevich, O., Kozma, G.: Random walk in changing environment (2017). arXiv:1504.04870v3

  2. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barlow, M.T.: Random Walks and Heat Kernels on Graphs. London Mathematical Society Lecture Notes Series 438. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Barlow, M.T., Chen, X.: Gaussian bounds and parabolic Harnack inequality on locally irregular graphs. Math. Ann. 366, 1677–1720 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendikov, A., Pittet, C., Sauer, R.: Spectral distribution and \(L^2\)-isoperimetric profile of Laplace operators on groups. Math. Ann. 354, 43–72 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biskup, M.: Recent progress on the random conductance model. Prob. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bass, R.F., Kumagai, T.: Symmetric Markov chains on \({\mathbb{Z}}^{d}\) with unbounded jumps. Trans. Am. Math. Soc. 360, 2041–2075 (2008)

    Article  MATH  Google Scholar 

  8. Coulhon, T.: Dimensions at infinity for Riemannian manifolds. Potential Anal. 4, 335–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coulhon, T.: Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal. 136, 81–113 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coulhon, T.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141, 510–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coulhon, T., Grigor’yan, A.: Random walk on graphs with regular volume growth. Geom. Funct. Anal. 8, 656–701 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coulhon, T., Grigor’yan, A., Zucca, F.: The discrete integral maximum principle and its applications. Tohoku Math. J. 57, 559–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields. 140, 277–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dembo, A., Huang, R., Morris, B., Peres, Y.: Transience in growing subgraphs via evolving sets. Ann. Inst. H. Poincaré Probab. Stat. 53, 1164–1180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Elect. J. Probab. 16, 1693–1722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 327–338 (1986)

    Article  MATH  Google Scholar 

  19. Goel, S., Montenegro, R., Tetali, P.: Mixing time bounds via the spectral profile. Elect. J. Probab. 11, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. (in Russian) Matem. Sbornik. 182, 55–87 (1991). (English transl.) Math. USSR Sbornik 72, 47–77 (1992)

  21. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuation for \(\nabla \varphi \) interface model. Ann. Probab. 29, 1138–1172 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, R., Kumagai, T.: Stability and instability of Gaussian heat kernel estimates for random walks among time-dependent conductances. Electron. Commun. Probab. 21(5), 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21, 673–709 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hebisch, W., Saloff-Coste, L.: On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51(5), 1437–1481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kumagai, T.: Random Walks on Disordered Media and Their Scaling Limits, Lect. Notes in Math. 2101, Ecole d’ete de probabilites de Saint-Flour XL–2010. Springer, New York (2014)

  26. Lawler, G.F., Sokal, A.D.: Bounds on the \(L^2\) spectrum for Markov chains and Markov porcesses: a generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309, 557–580 (1988)

    MATH  Google Scholar 

  27. Mourrat, J.-C., Otto, F.: Anchored Nash inequalities and heat kernel bounds for static and dynamic degenerate environments. J. Funct. Anal. 270, 201–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Inter. Math. Res. Notices 2, 27–38 (1992)

    Article  MATH  Google Scholar 

  29. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Notes Series 289. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  30. Saloff-Coste, L., Zúñiga, J.: Merging for inhomogeneous finite Markov chains, part I: singular values and stability. Elecront. J. Probab. 14, 1456–1494 (2009)

    Article  MATH  Google Scholar 

  31. Saloff-Coste, L., Zúñiga, J.: Merging for inhomogeneous finite Markov chains, part II: Nash and log-Sobolev inequalities. Ann. Probab. 39, 1161–1203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saloff-Coste, L., Zúñiga, J.: Merging and stability for time inhomogeneous finite Markov chains. Surveys in stochastic processes, 127-151, Eur. Math. Soc. (2011)

  33. Stroock, D.W., Zheng, W.: Markov chain approximations to symmetric diffusions. Ann. Inst. Henri Poincaré (B) 33, 619–649 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sturm, K.T.: Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32, 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Sturm, K.T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Stein, E.M., Weiss, G.L.: Introduction to Fourier analysis on Euclidean spaces, vol. 1. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Takashi Kumagai for proposing to pursue the ghk in our aim to verify [1, Conj. 7.1]. This work further benefited from discussions (of A.D.) with Martin Barlow and (of T.Z.) with Laurent Saloff-Coste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruojun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by NSF Grant DMS-1613091.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembo, A., Huang, R. & Zheng, T. Random walks among time increasing conductances: heat kernel estimates. Probab. Theory Relat. Fields 175, 397–445 (2019). https://doi.org/10.1007/s00440-018-0894-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0894-1

Keywords

Mathematics Subject Classification

Navigation