Skip to main content
Log in

Genome-wide association and Mendelian randomization analysis provide insights into the shared genetic architecture between high-dimensional electrocardiographic features and ischemic heart disease

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Observational studies have revealed that ischemic heart disease (IHD) has a unique manifestation on electrocardiographic (ECG). However, the genetic relationships between IHD and ECG remain unclear. We took 12-lead ECG as phenotypes to conduct genome-wide association studies (GWAS) for 41,960 samples from UK-Biobank (UKB). By leveraging large-scale GWAS summary of ECG and IHD (downloaded from FinnGen database), we performed LD score regression (LDSC), Mendelian randomization (MR), and polygenic risk score (PRS) regression to explore genetic relationships between IHD and ECG. Finally, we constructed an XGBoost model to predict IHD by integrating PRS and ECG. The GWAS identified 114 independent SNPs significantly (P value < 5 × 10–8/800, where 800 denotes the number of ECG features) associated with ECG. LDSC analysis indicated significant (P value < 0.05) genetic correlations between 39 ECG features and IHD. MR analysis performed by five approaches showed a putative causal effect of IHD on four S wave related ECG features at lead III. Integrating PRS for these ECG features with age and gender, the XGBoost model achieved Area Under Curve (AUC) 0.72 in predicting IHD. Here, we provide genetic evidence supporting S wave related ECG features at lead III to monitor the IHD risk, and open up a unique approach to integrate ECG with genetic factors for pre-warning IHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the FinnGen, https://www.finngen.fi/en, and UK Biobank https://www.ukbiobank.ac.uk/.

Abbreviations

IHD:

Ischemic heart disease

ECG:

Electrocardiographic

UKB:

UK Biobank

SMR:

Summary databased Mendelian randomization

GWAS:

Genome-wide association studies

LDSC:

Linkage disequilibrium score regression

SNP:

Single nucleotide polymorphism

MR:

Mendelian randomization

IVW:

Inverse variance-weighted

GSMR:

Generalized summary data-based Mendelian randomization

CAUSE:

Causal analysis using summary effect estimates

LCV:

Latent causal variable

HEIDI:

Heterogeneity in dependent instruments

GCP:

Genetic causality proportion

CI:

Confidence intervals

PRS:

Polygenic risk score

References

  • Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  PubMed  Google Scholar 

  • Alghatrif M, Lindsay J (2012) A brief review: history to understand fundamentals of electrocardiography. J Commun Hosp Internal Med Persp 2(1):14383

    Article  Google Scholar 

  • Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K et al (2019) Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 140(16):1318–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, He T, Benesty M et al (2015) Xgboost: extreme gradient boosting. R package version 0.4-2 1(4):1–4

    Google Scholar 

  • Choi SW, Mak TS-H, O’Reilly PF (2020) Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc 15(9):2759–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalos D, Spinka G, Schneider M, Wernly B, Paar V, Hoppe U et al (2019) New cardiovascular biomarkers in ischemic heart disease—GDF-15, a probable predictor for ejection fraction. J Clin Med 8(7):924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies NM, Holmes MV, Smith GD (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical research ed.) 362:k601

    Article  PubMed  Google Scholar 

  • Gagliano Taliun SA, VandeHaar P, Boughton AP, Welch RP, Taliun D, Schmidt EM et al (2020) Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet 52(6):550–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharel H, Pokhrel NB, Pokhrel B, Chapagain P, Poudel CM (2020) Implications of localized ST depression in a vascular territory and altered precordial T-wave balance in ischemic heart disease. Cureus 12(6):e8580

    PubMed  PubMed Central  Google Scholar 

  • Kramer O (2016) Scikit-learn. Machine learning for evolution strategies. Springer, Berlin, pp 45–53

    Google Scholar 

  • Kurki MI et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Cook S, Lee JS, Han B (2016) Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genom Inform 14(4):173–180

    Article  Google Scholar 

  • Li M, Kwok MK, Fong SSM, Schooling CM (2019) Indoleamine 2, 3-dioxygenase and ischemic heart disease: a Mendelian randomization study. Sci Rep 9(1):1–10

    Google Scholar 

  • Lin S et al (2023) Inferring the genetic relationship between brain imaging-derived phenotypes and risk of complex diseases by Mendelian randomization and genome-wide colocalization. Neuroimage 279:120325

    Article  CAS  PubMed  Google Scholar 

  • Lindow T, Pahlm O, Khoshnood A, Nyman I, Manna D, Engblom H et al (2020) Electrocardiographic changes in the differentiation of ischemic and non-ischemic ST elevation. Scand Cardiovasc J 54(2):100–107

    Article  CAS  PubMed  Google Scholar 

  • Lo P-K, Wang F-F (2002) Cloning and characterization of human and mouse DDA3 genes. Biochimica Et Biophysica Acta—Gene Struct Expr 1579(2–3):214–218

    Article  CAS  Google Scholar 

  • Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM et al (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 47(3):284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef AY, Finucane KH et al (2016) Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 48(11):1443–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E et al (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45(D1):D896-d901

    Article  CAS  PubMed  Google Scholar 

  • Makowski D et al (2021) NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav Res Methods 53:1689–1696

    Article  PubMed  Google Scholar 

  • Morrison J, Knoblauch N, Marcus JH, Stephens M, He X (2020) Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet 52(7):740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norland K, Sveinbjornsson G, Thorolfsdottir RB, Davidsson OB, Tragante V, Rajamani S et al (2019) Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun 10(1):4803

    Article  PubMed  PubMed Central  Google Scholar 

  • Ntalla I, Weng L-C, Cartwright JH, Hall AW, Sveinbjornsson G, Tucker NR et al (2020) Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nat Commun 11(1):2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor LJ, Price AL (2018) Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat Genet 50(12):1728–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S et al (2023) Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genom 17(1):1–36

    Article  CAS  Google Scholar 

  • Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779

    Article  PubMed  PubMed Central  Google Scholar 

  • Torlay L, Perrone-Bertolotti M, Thomas E et al (2017) Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inf 4(3):159–169

    Article  CAS  Google Scholar 

  • Verweij N, Benjamins JW, Morley MP, Vegte Y, Harst P (2020a) The genetic makeup of the electrocardiogram. Cell Syst 11(3):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verweij N, Benjamins J-W, Morley MP, van de Vegte YJ, Teumer A, Trenkwalder T et al (2020b) The genetic makeup of the electrocardiogram. Cell Syst 11(3):229–38.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu X, Zhang H, Xue A, Cooper DN, Yan L, Yang Y et al (2022) Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians. BMC Med 20(1):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Hamano T, Oka T et al (2021) Electrocardiogram findings at the initiation of hemodialysis and types of subsequent cardiovascular events. Hypertens Res 44(5):571–580

    Article  CAS  PubMed  Google Scholar 

  • Young WJ, Lahrouchi N, Isaacs A, Duong T, Foco L, Ahmed F et al (2022) Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways. Nat Commun 13(1):5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xiu X, Xue A, Yang Y, Yang Y, Zhao H (2022a) Mendelian randomization study reveals a population-specific putative causal effect of type 2 diabetes in risk of cataract. Int J Epidemiol 50(6):2024–2037

    Article  PubMed  Google Scholar 

  • Zhang H, Xiu X, Yang Y, Yang Y, Zhao H (2022b) Identification of putative causal relationships between type 2 diabetes and blood-based biomarkers in east Asians by Mendelian randomization. Am J Epidemiol 191(11):1867–1876

    Article  PubMed  Google Scholar 

  • Zhao H, Nyholt DR, Yang Y, Wang J, Yang Y (2017) Improving the detection of pathways in genome-wide association studies by combined effects of SNPs from Linkage Disequilibrium blocks. Sci Rep 7(1):3512

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yang Y, Lu Y, Mort M, Cooper DN, Zuo Z et al (2018) Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. Hum Mutat 39(2):292–301

    Article  PubMed  Google Scholar 

  • Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48(5):481–487

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R et al (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 9(1):1–12

    Google Scholar 

Download references

Acknowledgements

We’d like to thank the UK Biobank (application #65805) and the FinnGen project for making the data available.

Funding

The work was funded by the National Key Research and Development Program of China (2020YFB0204803), the Natural Science Foundation of China (81801132, 81971190, 61772566), Guangdong Key Field Research and Development Plan (2019B020228001,2018B010109006, and 2021A1515010256), Introducing Innovative and Entrepreneurial Teams (2016ZT06D211), Guangzhou Science and Technology Research Plan (202007030010), and Mater Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H. Zhao and Y.Yang designed the study. X.Wang performed the analyses with assistance from H. Zhang, M.Qi. X.Wang and H.Zhao wrote the manuscript. Y. Yang and H. Zhao supervised the study. All authors discussed the results and interpretation, and contributed to the final version of the paper.

Corresponding author

Correspondence to Huiying Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11064 KB)

Supplementary file2 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qi, M., Zhang, H. et al. Genome-wide association and Mendelian randomization analysis provide insights into the shared genetic architecture between high-dimensional electrocardiographic features and ischemic heart disease. Hum. Genet. 143, 49–58 (2024). https://doi.org/10.1007/s00439-023-02614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02614-5

Navigation