Skip to main content

Advertisement

Log in

The genetic basis of pneumococcal and staphylococcal infections: inborn errors of human TLR and IL-1R immunity

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Many bacteria can cause pyogenic lesions in humans. Most of these bacteria are harmless in most individuals, but they, nevertheless, cause significant morbidity and mortality worldwide. The inherited and acquired immunodeficiencies underlying these pyogenic infections differ between bacteria. This short review focuses on two emblematic pyogenic bacteria: pneumococcus (Streptococcus pneumoniae) and Staphylococcus, both of which are Gram-positive encapsulated bacteria. We will discuss the contribution of human genetic studies to the identification of germline mutations of the TLR and IL-1R pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Appelbaum PC (2002) Resistance among Streptococcus pneumoniae: Implications for drug selection. Clin Infect Dis 34:1613–1620

    PubMed  Google Scholar 

  • Ben Zeev B et al. (2002) Rett syndrome: clinical manifestations in males with MECP2 mutations. J Child Neurol 17:20–24

  • Beziat V et al. (2018) A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol 3: 4956

  • Bolze A et al (2018) Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated %3cem%3eRPSA%3c/em%3e exons. Proc Natl Acad Sci 115:8007–8016

    Google Scholar 

  • Bolze A et al (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340:976–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson B et al (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 13:1178–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson B et al (2013) An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39:676–686

    CAS  PubMed  Google Scholar 

  • Boisson B et al (2015) Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med 212:939–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson B, Puel A, Picard C, Casanova JL (2017) Human IkappaBalpha Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 37:397–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson B et al (2019) Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest 129:583–597

    PubMed  Google Scholar 

  • Bousfiha A et al (2018) The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol 38:129–143

    PubMed  Google Scholar 

  • Bunk S et al (2010) Internalization and coreceptor expression are critical for TLR2-mediated recognition of lipoteichoic acid in human peripheral blood. J Immunol 185:3708–3717

    CAS  PubMed  Google Scholar 

  • Burns SO et al (2014) Immunodeficiency and disseminated mycobacterial infection associated with homozygous nonsense mutation of IKKbeta. J Allergy Clin Immunol 134:215–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadieux-Dion M et al (2018) Novel heterozygous pathogenic variants in CHUK in a patient with AEC-like phenotype, immune deficiencies and 1q211 microdeletion syndrome: a case report. BMC Med Genet 19:41

    PubMed  PubMed Central  Google Scholar 

  • Cardinez C et al (2018) Gain-of-function IKBKB mutation causes human combined immune deficiency. J Exp Med 215:2715–2724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois G et al (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112:1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568

    PubMed  PubMed Central  Google Scholar 

  • Della Mina E et al (2017) Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Nal Acad Sci USA 114:E514–E523

    CAS  Google Scholar 

  • Eriksson M, Henriques B, Ekdahl K (2000) Epidemiology of pneumococcal infections in Swedish children. Acta Paediatr Suppl 89:35–39

    CAS  PubMed  Google Scholar 

  • Frankel RE, Virata M, Hardalo C, Altice FL, Friedland G (1996) Invasive pneumococcal disease: clinical features, serotypes, and antimicrobial resistance patterns in cases involving patients with and without human immunodeficiency virus infection. Clin Infect Dis 23:577–584

    CAS  PubMed  Google Scholar 

  • Frans G et al (2015) PID in disguise: molecular diagnosis of IRAK-4 deficiency in an adult previously misdiagnosed with autosomal dominant hyper IgE syndrome. J Clin Immunol 35:739–744

    CAS  PubMed  Google Scholar 

  • Frey-Jakobs S et al (2018) ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 3:4941

    Google Scholar 

  • Gelfand EW, Rao CP, Minta JO, Ham T, Purkall DB, Ruddy S (1987) Inherited deficiency of properdin and C2 in a patient with recurrent bacteremia. Am J Med 82:671–675

    CAS  PubMed  Google Scholar 

  • Giardino G et al (2016) Targeted next-generation sequencing revealed MYD88 deficiency in a child with chronic yersiniosis and granulomatous lymphadenitis. J Allergy Clin Immunol 137:1591–1595

    CAS  PubMed  Google Scholar 

  • Giebink GS (2001) The prevention of pneumococcal disease in children. N Engl J Med 345:1177–1183

    CAS  PubMed  Google Scholar 

  • Gillet Y et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359:753–759

    CAS  PubMed  Google Scholar 

  • Gobin K et al (2017) IRAK4 Deficiency in a patient with recurrent pneumococcal infections: case report and review of the literature. Front Pediatr 5:83

    PubMed  PubMed Central  Google Scholar 

  • Gokturk B et al (2018) A novel homozygous mutation with different clinical presentations in 2 IRAK-4-deficient siblings: first case with recurrent salmonellosis and non-hodgkin lymphoma. J Investig Allergol Clin Immunol 28:271–273

    CAS  PubMed  Google Scholar 

  • Grazioli S et al (2016) IRAK-4 deficiency as a cause for familial fatal invasive infection by Streptococcus pneumoniae. Clin Immunol 163:14–16

    CAS  PubMed  Google Scholar 

  • Gregorek H, Chrzanowska KH, Michalkiewicz J, Syczewska M, Madalinski K (2002) Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin Exp Immunol 130:319–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson EP, Monaco-Shawver L, Solt LA, Madge LA, Banerjee PP, May MJ, Orange JS (2008) Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(1169–1177):e1116

    Google Scholar 

  • Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidron AI, Low CE, Honig EG, Blumberg HM (2009) Emergence of community-acquired methicillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis 9:384–392

    PubMed  Google Scholar 

  • Israel L et al (2017) Human adaptive immunity rescues an inborn error of innate immunity. Cell 168(789–800):e710

    Google Scholar 

  • Iwai K (2012) Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol 22:355–364

    CAS  PubMed  Google Scholar 

  • Jimenez-Dalmaroni MJ et al (2009) Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS ONE 4:e7411

    PubMed  PubMed Central  Google Scholar 

  • Kalima P, Emmanuel FX, Riordan T (1999) Epidemiology of Streptococcus pneumoniae infections at the Edinburgh City Hospital: 1980–95. Epidemiol Infect 122:251–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayagaki N et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    CAS  PubMed  Google Scholar 

  • Khandelwal KD et al (2017) Identification of a de novo variant in CHUK in a patient with an EEC/AEC syndrome-like phenotype and hypogammaglobulinemia. Am J Med Genet A 173:1813–1820

    CAS  PubMed  Google Scholar 

  • Kirkpatrick B, Reeves DS, MacGowan AP (1994) A review of the clinical presentation, laboratory features, antimicrobial therapy and outcome of 77 episodes of pneumococcal meningitis occurring in children and adults. J Infect 29:171–182

    CAS  PubMed  Google Scholar 

  • Kisand K et al (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207:299–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klugman KP, Feldman C (2001) Streptococcus pneumoniae respiratory tract infections. Curr Opin Infect Dis 14:173–179

    CAS  PubMed  Google Scholar 

  • Krenn M et al (2018) Mutations outside the N-terminal part of RBCK1 may cause polyglucosan body myopathy with immunological dysfunction: expanding the genotype-phenotype spectrum. J Neurol 265:394–401

    CAS  PubMed  Google Scholar 

  • Ku CL et al (2007) Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204:2407–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahtela J et al (2010) Mutant CHUK and severe fetal encasement malformation. N Engl J Med 363:1631–1637

    CAS  PubMed  Google Scholar 

  • Leslie EJ et al (2015) Expanding the genetic and phenotypic spectrum of popliteal pterygium disorders. Am J Med Genet A 167A:545–552

    PubMed  Google Scholar 

  • Levy R et al (2016) Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci USA 113:E8277–E8285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy Y, Hershfield MS, Fernandez-Mejia C, Polmar SH, Scudiery D, Berger M, Sorensen RU (1988) Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J Pediatr 113:312–317

    CAS  PubMed  Google Scholar 

  • Ling Y et al (2015) Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 212:619–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    CAS  PubMed  Google Scholar 

  • Ma CS et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maglione PJ et al (2014) IRAK-4 and MyD88 deficiencies impair IgM responses against T-independent bacterial antigens. Blood 124:3561–3571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlaoui N et al (2011) Isolated congenital asplenia: a French nationwide retrospective survey of 20 cases. J Pediatr 158:142–148

    PubMed  Google Scholar 

  • Meli DN, Christen S, Leib SL, Tauber MG (2002) Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr Opin Infect Dis 15:253–257

    PubMed  Google Scholar 

  • Minegishi Y et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062

    CAS  PubMed  Google Scholar 

  • Miot C et al (2017) Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 130:1456–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan PV, Heath PT (2001) Pneumococcal disease in childhood. Hosp Med 62:406–409

    CAS  PubMed  Google Scholar 

  • Moriya K, Sasahara Y, Ohnishi H, Kawai T, Kanegane H (2018) IKBA S32 Mutations underlie ectodermal dysplasia with immunodeficiency and severe noninfectious systemic. Inflam J Clin Immunol 38:543–545

    CAS  Google Scholar 

  • Mousallem T et al (2014) A nonsense mutation in IKBKB causes combined immunodeficiency. Blood 124:2046–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen C et al (2014) Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol 34:916–921

    PubMed  Google Scholar 

  • Nieminen P et al (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 89:67–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson J et al (2013) Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol 74:914–919

    CAS  PubMed  Google Scholar 

  • Norris CF, Smith-Whitley K, McGowan KL (2003) Positive blood cultures in sickle cell disease: time to positivity and clinical outcome. J Pediatr Hematol Oncol 25:390–395

    PubMed  Google Scholar 

  • Obaro S, Adegbola R (2002) The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol 51:98–104

    PubMed  Google Scholar 

  • Oda H et al (2019) Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC. Front Immunol 10:479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohga S, Okada K, Asahi T, Ueda K, Sakiyama Y, Matsumoto S (1995) Recurrent pneumococcal meningitis in a patient with transient IgG subclass deficiency. Acta Paediatr Jpn 37:196–200

    CAS  PubMed  Google Scholar 

  • Owen EP et al (2012) Complement component C5 and C6 mutation screening indicated in meningococcal disease in South Africa. S Afr Med J 102:525–527

    CAS  PubMed  Google Scholar 

  • Paciolla M et al (2015) Rare mendelian primary immunodeficiency diseases associated with impaired NF-kappaB signaling. Genes Immun 16:239–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannicke U et al (2013) Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med 369:2504–2514

    CAS  PubMed  Google Scholar 

  • Peters TR, Brumbaugh DE, Lawton AR, Crowe JE Jr (2000) Recurrent pneumococcal arthritis as the presenting manifestation of X-linked agammaglobulinemia. Clin Infect Dis 31:1287–1288

    CAS  PubMed  Google Scholar 

  • Picard C et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299:2076–2079

    CAS  PubMed  Google Scholar 

  • Picard C, Puel A, Bustamante J, Ku CL, Casanova JL (2003) Primary immunodeficiencies associated with pneumococcal disease. Curr Opin Allergy Clin Immunol 3:451–459

    PubMed  Google Scholar 

  • Picard C, Casanova JL, Abel L (2006) Mendelian traits that confer predisposition or resistance to specific infections in humans. Curr Opin Immunol 18:383–390

    CAS  PubMed  Google Scholar 

  • Picard C et al (2010) Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89:403–425

    CAS  Google Scholar 

  • Picard C, Casanova JL, Puel A (2011) Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev 24:490–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puel A et al (2008) Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J Immunol 180:647–654

    CAS  PubMed  Google Scholar 

  • Puel A et al (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207:291–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puel A et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, Saltzman CL, Carling P, Shapiro DS (2003) Pneumococcal septic arthritis: review of 190 cases. Clin Infect Dis 36:319–327

    PubMed  Google Scholar 

  • Rubin TS, Rockman-Greenberg C, Van Caeseele P, Cuvelier GDE, Kwan L, Schroeder ML (2018) Newborn screening for IKBKB deficiency in manitoba, using genetic mutation analysis. J Clin Immunol 38:742–744

    CAS  PubMed  Google Scholar 

  • Sanal O et al (1999) Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. J Clin Immunol 19:326–334

    CAS  PubMed  Google Scholar 

  • Schwerd T et al (2017) A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J Exp Med 214:2547–2562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79:170–200

    CAS  Google Scholar 

  • Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC (2013) The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 13:43–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shichijo K et al. (2015) Recurrent Staphylococcus aureus abscess and fatal pneumococcal septicemia due to IRAK-4 deficiency. Pediatr Int 57:1166–1169

  • Sollid JU, Furberg AS, Hanssen AM, Johannessen M (2014) Staphylococcus aureus: determinants of human carriage. Infect Genet Evol 21:531–541

    CAS  PubMed  Google Scholar 

  • Sorensen RU, Moore C (2000) Antibody deficiency syndromes. Pediatr Clin North Am 47:1225–1252

    CAS  PubMed  Google Scholar 

  • Spaan AN, Surewaard BG, Nijland R, van Strijp JA (2013) Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 67:629–650

    CAS  PubMed  Google Scholar 

  • Spencer S et al (2019) Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med 216:1986–1998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan KE, Winkelstein JA (1999) Genetically determined deficiencies of the complement system. In: Ochs H, Edvard Smith CI, Puck JM (eds) Primary immunodefiency diseases : a molecular and genetic approach. Oxford University Press, New York.

  • Sun SC (2011) Non-canonical NF-kappaB signaling pathway Cell Res 21:71–85

    CAS  PubMed  Google Scholar 

  • Svensson L et al (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15:306–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takada H et al (2016) Invasive bacterial infection in patients with interleukin-1 receptor-associated kinase 4 deficiency. Case Rep Med (Baltimore) 95:e2437

    CAS  Google Scholar 

  • Thong YH, Simpson DA, Muller-Eberhard HJ (1980) Homozygous deficiency of the second component of complement presenting with recurrent bacterial meningitis. Arch Dis Child 55:471–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Totan M (2002) Recurrent pneumococcal meningitis in homozygous C3 deficiency. Indian J Pediatr 69:625–626

    PubMed  Google Scholar 

  • Venetz I, Schopfer K, Muhlemann K (1998) Paediatric, invasive pneumococcal disease in Switzerland, 1985–1994. Swiss Pneumococcal Study Group. Int J Epidemiol 27:1101–1104

    CAS  PubMed  Google Scholar 

  • von Bernuth H et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696

    Google Scholar 

  • Wang K et al (2013) Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med 5:67

    PubMed  PubMed Central  Google Scholar 

  • Ward AC, Dale DC (2009) Genetic and molecular diagnosis of severe congenital neutropenia. Curr Opin Hematol 16:9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller S et al (2012) IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood 120:4992–5001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762

    PubMed  Google Scholar 

  • Winkelstein JA et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169

    CAS  Google Scholar 

  • Wood PM, Mayne A, Joyce H, Smith CI, Granoff DM, Kumararatne DS (2001) A mutation in Bruton's tyrosine kinase as a cause of selective anti-polysaccharide antibody deficiency. J Pediatr 139:148–151

    CAS  PubMed  Google Scholar 

  • Zhang Q, Lenardo MJ, Baltimore D (2017) 30 Years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168:37–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Boisson B, Beziat V, Puel A, Casanova JL (2018) Human hyper-IgE syndrome: singular or plural? Mamm Genome 29:603–617

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank my colleagues at the Laboratory of Human Genetics of Infectious Diseases, my collaborators at the Rockefeller University, Hospital Necker-Enfants Malades and elsewhere, and our patients and families for their assistance. Special thanks to Jean-Laurent Casanova and Stephanie Boisson-Dupuis for their suggestions and to Yelena Nemirovskaya and Cécile Patissier for her assistance. The Laboratory of Human Genetics of Infectious Diseases is supported by grants from National Center for Research Resources and the National Center for Advancing Sciences (NCATS), National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program (UL1TR001866), National Institute of Allergy and Infectious Diseases, NIH (P01AI061093), the French Foundation for Medical Research (FRM) (EQU201903007798), French National Research Agency (ANR) under the “Investments for the future” program (ANR-10-IAHU-01) and PNEUMOPID project (ANR 14-CE15-0009–01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the Job Research Foundation, Programme Hospitalier de Recherche Clinique (PHRC), the St. Giles Foundation, the Rockefeller University, Institut National de la Santé et de la Recherche Médicale (INSERM), and Paris Descartes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Boisson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boisson, B. The genetic basis of pneumococcal and staphylococcal infections: inborn errors of human TLR and IL-1R immunity. Hum Genet 139, 981–991 (2020). https://doi.org/10.1007/s00439-020-02111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-020-02111-z

Navigation