Skip to main content

Advertisement

Log in

Statistical learning approaches in the genetic epidemiology of complex diseases

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In this paper, we give an overview of methodological issues related to the use of statistical learning approaches when analyzing high-dimensional genetic data. The focus is set on regression models and machine learning algorithms taking genetic variables as input and returning a classification or a prediction for the target variable of interest; for example, the present or future disease status, or the future course of a disease. After briefly explaining the basic motivation and principle of these methods, we review different procedures that can be used to evaluate the accuracy of the obtained models and discuss common flaws that may lead to over-optimistic conclusions with respect to their prediction performance and usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham G, Inouye M (2015) Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 33:10–16

    CAS  PubMed  Google Scholar 

  • Abraham G, Havulinna AS, Bhalala OG, Byars SG, De Livera AM, Yetukuri L, Tikkanen E, Perola M, Schunkert H, Sijbrands EJ et al (2016) Genomic prediction of coronary heart disease. Eur Heart J 37(43):3267–3278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nat Biotechnol 33(8):831–838

    CAS  PubMed  Google Scholar 

  • Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci 99(10):6562–6566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot P, de los Campos G, Pérez-Enciso M (2018) Can deep learning improve genomic prediction of complex human traits? Genetics 210(3):809–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulesteix AL (2016) In: Abdi H, Esposito Vinzi V, Russolillo G, Saporta G, Trinchera L (eds) The multiple facets of partial least squares methods. Springer, Berlin, pp 45–57

    Google Scholar 

  • Boulesteix AL, Sauerbrei W (2011) Added predictive value of high-throughput molecular data to clinical data and its validation. Brief Bioinform 12(3):215–229

    PubMed  Google Scholar 

  • Boulesteix AL, Strobl C (2009) Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction. BMC Med Res Methodol 9(1):85

    PubMed  PubMed Central  Google Scholar 

  • Boulesteix AL, Strobl C, Augustin T, Daumer M (2008) Evaluating microarray-based classifiers: an overview. Cancer Inform 6:77–97

    PubMed  PubMed Central  Google Scholar 

  • Boulesteix AL, Janitza S, Hornung R, Probst P, Busen H, Hapfelmeier A (2018) Making complex prediction rules applicable for readers: current practice in random forest literature and recommendations. Biometr J. https://doi.org/10.1002/bimj.201700243

    Article  Google Scholar 

  • Braga-Neto UM, Dougherty ER (2004) Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3):374–380

    CAS  PubMed  Google Scholar 

  • Breiman L (2001) Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16(3):199–231

    Google Scholar 

  • Chanock S, Manolio T, Boehnke M, Boerwinkle E, Hunter D, Thomas G, Hirschhorn J, Abecasis G, Altshuler D, Bailey-Wilson J, Brooks L, Cardon L, Daly M, Donnelly P, Fraumeni J, Freimer N, Gerhard D, Gunter C, Guttmacher A, Guyer M, Harris E, Hoh J, Hoover R, Kong C, Merikangas K, Morton C, Palmer L, Phimister E, Rice J, Roberts J, Rotimi C, Tucker M, Vogan K, Wacholder S, Wijsman E, Winn D, Collins F (2007) Replicating genotype–phenotype associations. Nature 447:655–660

    CAS  PubMed  Google Scholar 

  • Chen T, Guestrin C (2016) In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining ACM, New York, NY, USA, KDD ’16, pp 785–794. https://doi.org/10.1145/2939672.2939785

  • Chollet F et al (2015) Keras. https://keras.io

  • De Bin R, Sauerbrei W, Boulesteix AL (2014) Investigating the prediction ability of survival models based on both clinical and omics data: two case studies. Stat Med 33(30):5310–5329

    PubMed  Google Scholar 

  • Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99(2):147–157

    PubMed  Google Scholar 

  • Eriksson J, Evans DS, Nielson CM, Shen J, Srikanth P, Hochberg M, McWeeney S, Cawthon PM, Wilmot B, Zmuda J et al (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30(1):184–194

    PubMed  Google Scholar 

  • Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B (Stat Methodol) 70(5):849–911

    Google Scholar 

  • Geman D, Ochs M, Price ND, Tomasetti C, Younes L (2015) An argument for mechanism-based statistical inference in cancer. Hum Genet 134(5):479–495

    CAS  PubMed  Google Scholar 

  • Gola D, Mahachie John J, Van Steen K, König IR (2016) A roadmap to multifactor dimensionality reduction methods. Brief Bioinform 17:293–308

    PubMed  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

  • Haddow JE, Palomaki GE (2004) In: Khoury MJ, Little J, Burke W (eds) Human genome epidemiology: scope and strategies. Oxford University Press, New York, pp 217–233

  • Hastie T, Tibshirani R, Friedman JJH (2009) The elements of statistical learning, 2nd edn. Springer, New York

    Google Scholar 

  • Hornung R, Bernau C, Truntzer C, Wilson R, Stadler T, Boulesteix AL (2015) A measure of the impact of CV incompleteness on prediction error estimation with application to PCA and normalization. BMC Med Res Methodol 15(1):95

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, Xu X, Zhao H (2017) Leveraging functional annotations in genetic risk prediction for human complex diseases. PLoS Comput Biol 13(6):e1005589

    PubMed  PubMed Central  Google Scholar 

  • Igl BW, König IR, Ziegler A (2009) What do we mean by “replication” and “validation” in genome-wide association studies? Hum Heredity 67:66–68

    PubMed  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning with applications in R. Springer, New York

    Google Scholar 

  • Janitza S, Celik E, Boulesteix AL (2018) A computationally fast variable importance test for random forests for high-dimensional data. Adv Data Anal Classif 12(4):885–915

    Google Scholar 

  • Kelley DR, Snoek J, Rinn JL (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 26:990–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ et al (2016) Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 375(24):2349–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix AL (2018) Priority-lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinform 19(1):322

    Google Scholar 

  • König IR (2011) Validation in genetic association studies. Brief Bioinform 12:253–258

    PubMed  Google Scholar 

  • König IR, Malley JD, Weimar C, Diener HC, Ziegler A (2007) Practical experiences on the necessity of external validation. Stat Med 26:5499–5511

    PubMed  Google Scholar 

  • König IR, Malley JD, Pajevic S, Weimar C, Diener HC, Ziegler A (2008) Patient-centered yes/no prognosis using learning machines. Int J Data Min Bioinform 2(4):289–341

    PubMed  PubMed Central  Google Scholar 

  • König IR, Fuchs O, Hansen G, von Mutius E, Kopp M (2017) What is precision medicine? Eur Respir J 50:1700391

    PubMed  Google Scholar 

  • Kruppa J, Ziegler A, König IR (2012) Risk estimation and risk prediction using machine-learning methods. Hum Genet 131:1639–1654

    PubMed  PubMed Central  Google Scholar 

  • Kruppa J, Liu Y, Biau G, Kohler M, König IR, Malley JD, Ziegler A (2014) Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory. Biometr J 56(4):534–563

    Google Scholar 

  • Li C, Yang C, Gelernter J, Zhao H (2014) Improving genetic risk prediction by leveraging pleiotropy. Hum Genet 133(5):639–650

    PubMed  Google Scholar 

  • Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R (2014) A significance test for the lasso. Ann Stat 42(2):413–468

    PubMed  PubMed Central  Google Scholar 

  • Maier R, Moser G, Chen GB, Ripke S, Absher D, Agartz I, Akil H, Amin F, Andreassen OA, Anjorin A et al (2015) Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet 96(2):283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinshausen N, Meier L, Bühlmann P (2009) p values for high-dimensional regression. J Am Stat Assoc 104(488):1671–1681

    Google Scholar 

  • Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15):3301–3307

    CAS  PubMed  Google Scholar 

  • Müller B, Wilcke A, Boulesteix AL, Brauer J, Passarge E, Boltze J, Kirsten H (2016) Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives. Hum Genet 135(3):259–272

    PubMed  PubMed Central  Google Scholar 

  • Nembrini S, König IR, Wright MN (2018) The revival of the Gini importance? Bioinformatics 34(21):3711–3718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MA (2015) Neural networks and deep learning. Determination Press. http://neuralnetworksanddeeplearning.com

  • Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30(1):11–21

    PubMed  Google Scholar 

  • Pingault JB, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F (2018) Using genetic data to strengthen causal inference in observational research. Nat Rev Genet 19(9):566–580

    CAS  PubMed  Google Scholar 

  • Smith JA, Ware EB, Middha P, Beacher L, Kardia SL (2015) Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes. Curr Epidemiol Rep 2(3):180–190

    PubMed  PubMed Central  Google Scholar 

  • Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M, Kivimäki M, Humphries SE (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. Br Med J 340:b4838

    Google Scholar 

  • Taylor J, Tibshirani R (2018) Post-selection inference for-penalized likelihood models. Can J Stat 46(1):41–61

    PubMed  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Stat Methodol) 58:267–288

    Google Scholar 

  • Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinform 7(1):91

    Google Scholar 

  • Wasserman L, Roeder K (2009) High dimensional variable selection. Ann Stat 37(5A):2178–2201

    PubMed  PubMed Central  Google Scholar 

  • Wilson P, D’Agostino R, Levy D, Belanger A, Silbershatz H, Kannel W (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

    CAS  PubMed  Google Scholar 

  • Winham SJ, Jenkins GD, Biernacka JM (2016) Modeling x chromosome data using random forests: conquering sex bias. Genet Epidemiol 40:123–132

    PubMed  Google Scholar 

  • Wright M, Ziegler A (2017) Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw 77(1):1–17

    Google Scholar 

  • Wu J, Pfeiffer RM, Gail MH (2013) Strategies for developing prediction models from genome-wide association studies. Genet Epidemiol 37(8):768–777

    CAS  PubMed  Google Scholar 

  • Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12(10):931–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler A, DeStefano AL, König IR (2007) Data mining, neural nets, trees—problems 2 and 3 of genetic analysis workshop 15. Genet Epidemiol 31:S51–S60

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jenny Lee for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Boulesteix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulesteix, AL., Wright, M.N., Hoffmann, S. et al. Statistical learning approaches in the genetic epidemiology of complex diseases. Hum Genet 139, 73–84 (2020). https://doi.org/10.1007/s00439-019-01996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-01996-9

Keywords

Navigation