Skip to main content
Log in

Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2010

Abstract

The etiology of schizophrenia likely involves genetic interactions. DISC1, a promising candidate susceptibility gene, encodes a protein which interacts with many other proteins, including CIT, NDEL1, NDE1, FEZ1 and PAFAH1B1, some of which also have been associated with psychosis. We tested for epistasis between these genes in a schizophrenia case–control study using machine learning algorithms (MLAs: random forest, generalized boosted regression and Monte Carlo logic regression). Convergence of MLAs revealed a subset of seven SNPs that were subjected to 2-SNP interaction modeling using likelihood ratio tests for nested unconditional logistic regression models. Of the 7C2 = 21 interactions, four were significant at the α = 0.05 level: DISC1 rs1411771–CIT rs10744743 OR = 3.07 (1.37, 6.98) p = 0.007; CIT rs3847960–CIT rs203332 OR = 2.90 (1.45, 5.79) p = 0.003; CIT rs3847960–CIT rs440299 OR = 2.16 (1.04, 4.46) p = 0.038; one survived Bonferroni correction (NDEL1 rs4791707–CIT rs10744743 OR = 4.44 (2.22, 8.88) p = 0.00013). Three of four interactions were validated via functional magnetic resonance imaging (fMRI) in an independent sample of healthy controls; risk associated alleles at both SNPs predicted prefrontal cortical inefficiency during the N-back task, a schizophrenia-linked intermediate biological phenotype: rs3847960–rs440299; rs1411771–rs10744743, rs4791707–rs10744743 (SPM5 p < 0.05, corrected), although we were unable to statistically replicate the interactions in other clinical samples. Interestingly, the CIT SNPs are proximal to exons that encode the DISC1 interaction domain. In addition, the 3′ UTR DISC1 rs1411771 is predicted to be an exonic splicing enhancer and the NDEL1 SNP is ~3,000 bp from the exon encoding the region of NDEL1 that interacts with the DISC1 protein, giving a plausible biological basis for epistasis signals validated by fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blokland GA, McMahon KL, Hoffman J, Zhu G, Meredith M et al (2008) Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: a twin fMRI study. Biol Psychol 79:70–79

    Article  PubMed  Google Scholar 

  • Bloom L, Horvitz HR (1997) The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc Natl Acad Sci USA 97:3414–3419

    Article  Google Scholar 

  • Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M et al (2004) Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 25:42–55

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont

    Google Scholar 

  • Brown BW, Lovato J, Russell K (1999) Asymptotic power calculations: description, examples, computer code. Stat Med 18:3137–3151

    Article  CAS  PubMed  Google Scholar 

  • Burdick KE, Kamiya A, Hodgkinson CA, Lencz T, DeRosse P et al (2008) Elucidating the relationship between DISC1, NDEL1, and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet 17:2462–2473

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R et al (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 9:20–26

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF et al (2003a) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160:2209–2215

    Article  PubMed  Google Scholar 

  • Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD et al (2003b) Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 160:709–719

    Article  PubMed  Google Scholar 

  • Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102:8627–8632

    Article  CAS  PubMed  Google Scholar 

  • Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J et al (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Carmargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H et al (2007) Disrupted in Schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12:74–86

    Article  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  CAS  PubMed  Google Scholar 

  • Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J et al (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621–W625

    Article  CAS  PubMed  Google Scholar 

  • de Bakker PIW, Yelensky R, Pe’er I, Gabriel SB, Daly MJ et al (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223

    Article  PubMed  Google Scholar 

  • Devon RS, Anderson S, Teague PW, Burgess P, Kipari TM et al (2001) Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr Genet 11:71–78

    Article  CAS  PubMed  Google Scholar 

  • Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A et al (2000) Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28:115–127

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Gscheidle T, Weirich M, Bigelow LB et al (2000) Relative risk of attention deficits in siblings of patients with schizophrenia. Am J Psychiatry 157:1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Olson EC, Stukenberg PT, Flanagan LA, Kirschner MW et al (2000) LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28:279–293

    Google Scholar 

  • Fogli A, Guerrini R, Moro F, Fernandez-Alvarez E, Livet MO et al (1999) Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly. Ann Neurol 45:154–161

    Article  CAS  PubMed  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Furuyashiki T, Fujisawa K, Fijita A, Madaule P, Uchino S et al (1999) Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J Neurosci 19:109–118

    CAS  PubMed  Google Scholar 

  • Hennah W, Varilo T, Kestilä M, Paunio T, Arajrävi R et al (2003) Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 12:3151–3159

    Article  CAS  PubMed  Google Scholar 

  • Hennah W, Tomppo L, Hiekkalinna T, Palo OM, Kilpinen H et al (2007) Families with the risk allele of DISC1 reveal a link between schizophrenia and another component of the same molecular pathway, NDE1. Hum Mol Genet 16:453–462

    Article  CAS  PubMed  Google Scholar 

  • Hennah W, Thomson P, McQuillin A, Bass N, Loukola A et al (2008) DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 14:865–873 (Epub March 4)

    Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C et al (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM et al (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75:862–872

    Article  CAS  PubMed  Google Scholar 

  • Hodgkinson CA, Goldman D, Ducci F, DeRosse P, Caycedo DA et al (2007) The FEZ1 gene shows no association to schizophrenia in Caucasian or African American populations. Neuropsychopharmacology 32:190–196

    Article  CAS  PubMed  Google Scholar 

  • Kähler AK, Djurovic S, Kulle B, Jönsson EG, Agartz I et al (2008) Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am J Med Genet Part B (Neuropsychiatr Genet) 147B:1089–1100

    Article  Google Scholar 

  • Kamiya A, Tomoda T, Chang J, Takaki M, Zhan C et al (2006) DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 15:3313–3323

    Article  CAS  PubMed  Google Scholar 

  • Kockelkorn TT, Arai M, Matsumoto H, Fukuda N, Yamada K et al (2004) Association study of polymorphisms in the 5′ upstream region of human DISC1 gene with schizophrenia. Neurosci Lett 368:41–45

    Article  CAS  PubMed  Google Scholar 

  • Koga M, Ishiguro H, Horiuchi Y, Albalushi T, Inada T et al (2007) Failure to confirm the association between the FEZ1 gene and schizophrenia in a Japanese population. Neurosci Lett 417:326–329

    Article  CAS  PubMed  Google Scholar 

  • Kooperberg C, Ruczinski I (2005) Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol 28:157–170

    Article  PubMed  Google Scholar 

  • Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L (2001) Sequence analysis using logic regression. Genet Epidemiol 21(Suppl 1):S626–S631

    PubMed  Google Scholar 

  • Li W, Zhou Y, Jentsch JD, Brown RA, Tian X et al (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280–18285

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C et al (2006) Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 15:1245–1258

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-L, Fann CS, Liu CM, Chen WJ, Wu JY et al (2006) A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biol Psychiatry 60:554–562

    Article  CAS  PubMed  Google Scholar 

  • Longmate JA (2001) Complexity and power in case-control association studies. Am J Hum Genet 68:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Lyons-Warren A, Chang JJ, Balkissoon R, Kamiya A, Garant M et al (2005) Evidence of association between bipolar disorder and Citron on chromosome 12q24. Mol Psychiatry 10:807–809

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K et al (2006) Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry 60:929–935

    Article  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Nicodemus KK, Egan MF, Calicott JH, Mattay V et al (2008) False positives in imaging genetics. Neuroimage 40:655–661

    Article  PubMed  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei Loh D et al (2001) Genomic structure and localisation within a linkage hotspot of Disrupted in Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 6:173–178

    Article  CAS  PubMed  Google Scholar 

  • Millar JK, James R, Christie S, Porteous DJ (2005) Disrupted in schizophrenia 1 (DISC1): subcellular targeting and induction of ring mitochondria. Mol Cell Neurosci 30:477–484

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K et al (2003) Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 8:685–694

    Article  CAS  PubMed  Google Scholar 

  • Morris JA, Kandpal G, Ma L, Austin CP (2003) DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 12:1591–1608

    Article  CAS  PubMed  Google Scholar 

  • Need AC, Ge D, Weale ME, Maia J, Feng S et al (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5:e1000373

    Article  PubMed  Google Scholar 

  • Nicodemus KK, Malley JD (2009) Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 25:1884–1890

    Google Scholar 

  • Nicodemus KK, Wang W, Shugart YY (2007) Stability of variable importance scores and rankings using statistical learning tools on single-nucleotide polymorphisms and risk factors involved in gene × gene and gene × environment interactions. BMC Proc 1(Suppl 1):S58

    Article  PubMed  Google Scholar 

  • Numata S, Ueno S, Iga J, Nakataki M, Ohmori T et al (2008) No association between the NDE1 gene and schizophrenia in the Japanese population. Schizophr Res 99:367–369

    Article  PubMed  Google Scholar 

  • Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L et al (2003) Disrupted-in-Schizophrenia 1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 100:289–294

    Article  CAS  PubMed  Google Scholar 

  • Palo OM, Antila M, Silander K, Hennah W, Kilpinen H et al (2007) Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 16:2517–2528

    Article  CAS  PubMed  Google Scholar 

  • Pletnikov MV, Ayhan Y, Nikolskaia O, Ovanesov MV, Huang H et al (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13:173–186

    Article  CAS  PubMed  Google Scholar 

  • Porteous DJ, Thomson P, Brandon NJ, Millar JK (2006) The genetics and biology of DISC1—an emerging role in psychosis and cognition. Biol Psychiatry 60:123–131

    Article  CAS  PubMed  Google Scholar 

  • Saetre P, Agartz I, De Franciscis A, Lundmark P, Djurovic S et al (2008) Association between a disrupted-in-schizophrenia (DISC1) single nucleotide polymorphism and schizophrenia in a combined Scandinavian case-control sample. Schizophr Res 106:237–241

    Article  PubMed  Google Scholar 

  • Sanders AR, Duan J, Levinson DF, Shi J, He D et al (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 165:497–506

    Article  PubMed  Google Scholar 

  • Schumacher J, Laje G, Jamra RA, Becker T, Mühleisen TW et al (2009) The DISC locus and schizophrenia—evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet 18:2719–2727 (Epub May 4)

    Google Scholar 

  • Self SG, Mauritsen RH, Ohara J (1992) Power calculations for likelihood ratio tests in generalized linear models. Biometrics 48:31–39

    Article  Google Scholar 

  • Shu T, Ayala R, Nguyen MD, Xie Z, Gleeson JG et al (2004) Ndel operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 14:263–277

    Article  Google Scholar 

  • Song W, Li W, Feng J, Heston LL, Scaringe WA et al (2008) Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochem Biophys Res Commun 367:700–706

    Article  CAS  PubMed  Google Scholar 

  • St. Clair D, Blackwood D, Muir W, Carothers A, Walker M et al (1990) Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336:13–16

    Article  CAS  PubMed  Google Scholar 

  • Tarricone C, Perrina F, Monzani S, Massimiliano L, Kim MH et al (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44:809–821

    CAS  PubMed  Google Scholar 

  • Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K et al (2007) DISC1 regulates the transport of the NUDEL/LIS1/14–3-3ε complex through kinesin-1. J Neurosci 27:15–26

    Article  CAS  PubMed  Google Scholar 

  • Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL et al (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 10:657–668

    Article  CAS  PubMed  Google Scholar 

  • Tomppo L, Hennah W, Lahermo P, Loukola A, Tuulio-Henriksson A et al (2009) Association between genes of disrupted in schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses. Biol Psychiatry 65:1055–1062 (Epub February 27)

    Google Scholar 

  • Wood LS, Pickering EH, Dechairo BM (2007) Significant support for DAO as a schizophrenia susceptibility locus: examination of five genes putatively associated with schizophrenia. Biol Psychiatry 61:1195–1199

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA et al (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40:880–885

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Nakamura K, Minabe Y, Iwayama-Shigeno Y, Takao H et al (2004) Association analysis of FEZ1 variants with schizophrenia in Japanese cohorts. Biol Psychiatry 56:683–690

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tochigi M, Ohashi J, Maeda K, Kato T et al (2005) Association study of the DISC1/TRAX locus with schizophrenia in a Japanese population. Schizophr Res 79:175–180

    Article  PubMed  Google Scholar 

  • Zhang F, Sarginson J, Crombie C, Walker N, St Clair D et al (2006) Genetic association between schizophrenia and the DISC1 gene in the Scottish population. Am J Med Genet Part B (Neuropsychiatr Genet) 141B:155–159

    Article  CAS  Google Scholar 

  • Zhang F, Sarginson J, Crombie C, Walker N, St Clair D et al (2007) Erratum: Genetic association between schizophrenia and the DISC1 gene in the Scottish population. Am J Med Genet Part B (Neuropsychiatric Genet) 144B:840

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study utilized the high performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD (http://biowulf.nih.gov). We thank Michael Dean, Bert Gold and Kate McGee for assistance with GAIN genotyping data. The authors declare the following competing interest: Pierandrea Muglia is a full-time employee of the pharmaceutical company GlaxoSmithKline who have filed patent applications for SNPs associated with schizophrenia (United States Patent Applications 20080176239 and 20080176240 and International Application Number PCT/EP2008/050477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Weinberger.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00439-010-0793-8

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicodemus, K.K., Callicott, J.H., Higier, R.G. et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet 127, 441–452 (2010). https://doi.org/10.1007/s00439-009-0782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0782-y

Keywords