Skip to main content

Advertisement

Log in

Barrett’s oesophagus: an ideal model to study cancer genetics

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Chronic gastro-oesophageal reflux disease can induce a metaplastic change of the distal oesophagus called Barrett’s oesophagus whereby the normal squamous epithelium is substituted by a columnar epithelium. Patients with Barrett’s oesophagus are at increased risk of oesophageal adenocarcinoma which occurs through dysplastic stages with increasing degree of cellular and architectural disorganization. Barrett’s oesophagus represents an ideal model to study the genetic events supporting the onset of an invasive tumour since patients with this condition are surveilled with endoscopic tissue sampling until high grade dysplasia or intramucosal carcinoma develop. However, due to the relatively low incidence of this disease compared to other cancers, i.e. colon and breast, it is only recently that researchers have concentrated on understanding the genetic events supporting the onset of Barrett’s and its transformation to cancer. Here, we review the knowledge acquired so far on the genetic and molecular alterations along the oesophageal metaplasia–dysplasia-carcinoma sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC (2004) Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res 15;10(14):4784–4792

    Google Scholar 

  • Anderson MR, Harrison R, Atherfold PA, Campbell MJ, Darnton SJ, Obszynska J, Jankowski JA (2006) Met receptor signaling: a key effector in esophageal adenocarcinoma. Clin Cancer Res 15;12(20 Pt 1):5936–5943

    Google Scholar 

  • Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E, Ahsan H, Finegold J, Stevens PD, Green PH, Hibshoosh H, Neugut AI, Holt PR, Weinstein IB (1996) Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 5(6):457–459

    PubMed  CAS  Google Scholar 

  • Auvinen MI, Sihvo EI, Ruohtula T, Salminen JT, Koivistoinen A, Siivola P, Rönnholm R, Rämö JO, Bergman M, Salo JA (2002) Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma J Clin Oncol 1;20(13):2971–2979

    Google Scholar 

  • Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J (1998) Altered cadherin and catenin complexes in the Barrett’s esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol 152(1):135–144

    PubMed  CAS  Google Scholar 

  • Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D, Wild CP (2000) Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma J Natl Cancer Inst 16;92(16):1316–1321

    Google Scholar 

  • Barr H, Stone N, Rembacken B (2005) Endoscopic therapy for Barrett’s oesophagus. Gut 54(6):875–884

    Google Scholar 

  • Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG, Rabinovitch PS, Reid BJ (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22(1):106–109

    Article  PubMed  CAS  Google Scholar 

  • Baumann S, Keller G, Pühringer F, Napieralski R, Feith M, Langer R, Höfler H, Stein HJ, Sarbia M (2006) The prognostic impact of O6-Methylguanine-DNA Methyltransferase (MGMT) promotor hypermethylation in esophageal adenocarcinoma Int J Cancer 15;119(2):264–268

    Google Scholar 

  • Beck F (2004) The role of Cdx genes in the mammalian gut. Gut 53:1394–1396

    Article  PubMed  CAS  Google Scholar 

  • Berghöfer A, Pischon T, Reinhold T, Apovian CM, Sharma AM, Willich SN (2008) Obesity prevalence from a European perspective: a systematic review BMC Public Health 5;8:200

    Google Scholar 

  • Beuzen F, Dubois S, Fléjou JF (2000) Chromosomal numerical aberrations are frequent in oesophageal and gastric adenocarcinomas: a study using in situ hybridization. Histopathology 37(3):241–249

    Article  PubMed  CAS  Google Scholar 

  • Blount PL, Meltzer SJ, Yin J, Huang Y, Krasna MJ, Reid BJ (1993) Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci USA 15;90(8):3221–3225

    Google Scholar 

  • Bredberg A, Bodmer W (2007) Cytostatic drug treatment causes seeding of gene promoter methylation. Eur J Cancer 43(5):947–954

    Article  PubMed  CAS  Google Scholar 

  • Brown LM, Devesa SS, Chow WH (2008) Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst 20;100(16):1184–1187

    Google Scholar 

  • Buttar NS, Wang KK, Sebo TJ, Riehle DM, Krishnadath KK, Lutzke LS, Anderson MA, Petterson TM, Burgart LJ (2001) Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology 120:1630–1639

    Article  PubMed  CAS  Google Scholar 

  • Buttar NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA, Krishnadath KK, Lutzke LS, Burgart LJ (2002) Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 122:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Cameron AJ, Lagergren J, Henriksson C, Nyren O, Locke GR 3rd, Pedersen NL (2002) Gastroesophageal reflux disease in monozygotic and dizygotic twins. Gastroenterology 122:55–59

    Article  PubMed  Google Scholar 

  • Casson AG, Zheng Z, Evans SC, Geldenhuys L, van Zanten SV, Veugelers PJ, Porter GA, Guernsey DL (2005a) Cyclin D1 polymorphism (G870A) and risk for esophageal adenocarcinoma. Cancer 104:730–739

    Article  PubMed  CAS  Google Scholar 

  • Casson AG, Zheng Z, Evans SC, Veugelers PJ, Porter GA, Guernsey DL (2005b) Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Carcinogenesis 26(9):1536–1541

    Article  PubMed  CAS  Google Scholar 

  • Casson AG, Zheng Z, Porter GA, Guernsey DL (2006) Genetic polymorphisms of microsomal epoxide hydroxylase and glutathione S-transferases M1, T1 and P1, interactions with smoking, and risk for esophageal (Barrett) adenocarcinoma. Cancer Detect Prev 30(5):423–431

    Article  PubMed  CAS  Google Scholar 

  • Cawley HM, Meltzer SJ, De Benedetti VM, Hollstein MC, Muehlbauer KR, Liang L, Bennett WP, Souza RF, Greenwald BD, Cottrell J, Salabes A, Bartsch H, Trivers GE (1998) Anti-p53 antibodies in patients with Barrett’s esophagus or esophageal carcinoma can predate cancer diagnosis. Gastroenterology 115:19–27

    Article  PubMed  CAS  Google Scholar 

  • Chak A, Lee T, Kinnard MF, Brock W, Faulx A, Willis J, Cooper GS, Sivak MV Jr, Goddard KA (2002) Familial aggregation of Barrett’s oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults. Gut 51:323–328

    Article  PubMed  CAS  Google Scholar 

  • Chak A, Faulx A, Kinnard M, Brock W, Willis J, Wiesner GL, Parrado AR, Goddard KA (2004) Identification of Barrett’s esophagus in relatives by endoscopic screening. Am J Gastroenterol 99:2107–2114

    Article  PubMed  Google Scholar 

  • Chak A, Ochs-Balcom H, Falk G, Grady WM, Kinnard M, Willis JE, Elston R, Eng C (2006) Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol Biomarkers Prev 15(9):1668–1673

    Article  PubMed  Google Scholar 

  • Chandrasoma P, Wickramasinghe K, Ma Y, DeMeester T (2007) Is intestinal metaplasia a necessary precursor lesion for adenocarcinomas of the distal esophagus, gastroesophageal junction and gastric cardia? Dis Esophagus 20(1):36–41

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Lao-Sirieix P, Save V, De La Cueva Mendez G, Laskey R, Fitzgerald RC (2007) Retinoic acid-induced glandular differentiation of the oesophagus. Gut 56(7):906–917

    Article  PubMed  CAS  Google Scholar 

  • Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J (2006) Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene 18;25(21):3084–3092

    Google Scholar 

  • Clément G, Guilleret I, He B, Yagui-Beltrán A, Lin YC, You L, Xu Z, Shi Y, Okamoto J, Benhattar J, Jablons D (2008) Epigenetic alteration of the Wnt inhibitory factor-1 promoter occurs early in the carcinogenesis of Barrett's esophagus. Cancer Sci 99(1):46–53

    Google Scholar 

  • Clemons NJ, McColl KE, Fitzgerald RC (2007) Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133(4):1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Combet E, Paterson S, Iijima K, Winter J, Mullen W, Crozier A, Preston T, McColl KE (2007) Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut 56(12):1678–1684

    Article  PubMed  CAS  Google Scholar 

  • Corley DA, Kubo A, Levin TR, Block G, Habel L, Zhao W, Leighton P, Quesenberry C, Rumore GJ, Buffler PA (2007) Abdominal obesity and body mass index as risk factors for Barrett’s esophagus. Gastroenterology 133:34–41

    Article  PubMed  Google Scholar 

  • Corley DA, Kubo A, Levin TR, Block G, Habel L, Zhao W, Leighton P, Rumore G, Quesenberry C, Buffler P, Parsonnet J (2008) Helicobacter pylori infection and the risk of Barrett’s oesophagus: a community-based study. Gut 57:727–733

    Article  PubMed  CAS  Google Scholar 

  • Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735

    PubMed  CAS  Google Scholar 

  • Crabb DW, Berk MA, Hall TR, Conneally PM, Biegel AA, Lehman GA (1985) Familial gastroesophageal reflux and development of Barrett’s esophagus. Ann Intern Med 103:52–54

    PubMed  CAS  Google Scholar 

  • de Moraes E, Dar NA, de Moura Gallo CV, Hainaut P (2007) Cross-talks between cyclooxygenase-2 and tumor suppressor protein p53: balancing life and death during inflammatory stress and carcinogenesis. Int J Cancer 1;121(5):929–937

    Google Scholar 

  • Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA (2006) Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 130(4):1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Dent J, El-Serag HB, Wallander MA, Johansson S (2005) Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 54(5):710–717

    Article  PubMed  CAS  Google Scholar 

  • Doecke J, Zhao ZZ, Pandeya N, Sadeghi S, Stark M, Green AC, Hayward NK, Webb PM, Whiteman DC Australian Cancer Study (2008) Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. Int J Cancer 1;123(1):174–180

    Google Scholar 

  • Dolan K, Garde J, Walker SJ, Sutton R, Gosney J, Field JK (1999) LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett’s metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 30(12):1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Donaldson L (2008) CMO annual report 2007. A Pathological Concern Understanding the rise in oesophageal cancer http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/AnnualReports/DH_086176

  • Drovdlic CM, Goddard KA, Chak A, Brock W, Chessler L, King JF, Richter J, Falk GW, Johnston DK, Fisher JL, Grady WM, Lemeshow S, Eng C (2003) Demographic and phenotypic features of 70 families segregating Barrett’s oesophagus and oesophageal adenocarcinoma. J Med Genet 40:651–656

    Article  PubMed  CAS  Google Scholar 

  • Dvorak K, Fass R, Dekel R, Payne CM, Chavarria M, Dvorakova B, Bernstein H, Bernstein C, Garewal H (2006) Esophageal acid exposure at pH ≤ 2 is more common in Barrett’s esophagus patients and is associated with oxidative stress. Dis Esophagus 19(5):366–372

    Article  PubMed  CAS  Google Scholar 

  • Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, Holubec H, Sampliner RE, Guy N, Condon A, Bernstein C, Green SB, Prasad A, Garewal HS (2007) Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut. 56(6):763–771

    Article  PubMed  CAS  Google Scholar 

  • Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K (2003) Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol 38:14–22

    Article  PubMed  CAS  Google Scholar 

  • Edelstein ZR, Farrow DC, Bronner MP, Rosen SN, Vaughan TL (2007) Central adiposity and risk of Barrett’s esophagus. Gastroenterology 133:403–411

    Article  PubMed  Google Scholar 

  • Eloubeidi MA, Mason AC, Desmond RA, El-Serag HB (2003) Temporal trends (1973–1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope? Am J Gastroenterol 98(7):1627–1633

    PubMed  Google Scholar 

  • Eng C, Spechler SJ, Ruben R, Li FP (1993) Familial Barrett esophagus and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol Biomarkers Prev 2:397–399

    PubMed  CAS  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    Article  PubMed  CAS  Google Scholar 

  • Evans SC, Gillis A, Geldenhuys L, Vaninetti NM, Malatjalian DA, Porter GA, Guernsey DL, Casson AG (2004) Microsatellite instability in esophageal adenocarcinoma. Cancer Lett 30;212(2):241–251

    Google Scholar 

  • Falk GW (2002) Barrett’s esophagus. Gastroenterology 122:1569–1591

    Article  PubMed  Google Scholar 

  • Falkenback D, Johansson J, Halvarsson B, Nilbert M (2005) Defective mismatch-repair as a minor tumorigenic pathway in Barrett esophagus-associated adenocarcinoma. Cancer Genet Cytogenet 157(1):82–86

    Article  PubMed  CAS  Google Scholar 

  • Farhadi A, Fields J, Banan A, Keshavarzian A (2002) Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett’s esophagus, and the latter’s progression toward esophageal cancer? Am J Gastroenterol 97(1):22–26

    Article  PubMed  CAS  Google Scholar 

  • Feith M, Stein HJ, Mueller J, Siewert JR (2004) Malignant degeneration of Barrett’s esophagus: the role of the Ki-67 proliferation fraction, expression of E-cadherin and p53. Dis Esophagus 17(4):322–327

    Article  PubMed  CAS  Google Scholar 

  • Ferguson HR, Wild CP, Anderson LA, Murphy SJ, Johnston BT, Murray LJ, Watson RG, McGuigan J, Reynolds JV, Hardie LJ (2008) Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 17(3):727–731

    Article  PubMed  CAS  Google Scholar 

  • Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li X, Self SG, Gollahon KA, Blount PL, Rabinovitch PS (2006) Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev 15(8):1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Galipeau PC, Prevo LJ, Sanchez CA, Longton GM, Reid BJ (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 15;91(24):2087–2095

    Google Scholar 

  • Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67

    Article  PubMed  CAS  Google Scholar 

  • García Rodríguez LA, Lagergren J, Lindblad M (2006) Gastric acid suppression and risk of oesophageal and gastric adenocarcinoma: a nested case control study in the UK. Gut 55(11):1538–1544

    Article  PubMed  Google Scholar 

  • Garewal HS, Sampliner R, Liu Y, Trent JM (1989) Chromosomal rearrangements in Barrett’s esophagus. A premalignant lesion of esophageal adenocarcinoma. Cancer Genet Cytogenet 15;42(2):281–286

    Google Scholar 

  • Gatenby PA, Ramus JR, Caygill CP, Shepherd NA, Watson A (2008) Relevance of the detection of intestinal metaplasia in non-dysplastic columnar-lined oesophagus. Sand J Gastroenterol 43(5):524–530

    Article  Google Scholar 

  • Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 15;19(8):877–890

    Google Scholar 

  • Haggitt RC, Tryzelaar J, Ellis FH, Colcher H (1978) Adenocarcinoma complicating columnar epithelium-lined (Barrett’s) esophagus. Am J Clin Pathol 70:1–5

    PubMed  CAS  Google Scholar 

  • Haigh CR, Attwood SE, Thompson DG, Jankowski JA, Kirton CM, Pritchard DM, Varro A, Dimaline R (2003) Gastrin induces proliferation in Barrett’s metaplasia through activation of the CCK2 receptor. Gastroenterology 124(3):615–625

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SR, Smith RR, Cameron JL (1988) Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Hum Pathol 19(8):942–948

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Payne WS, Weiland LH (1973) Adenocarcinoma in the columnar epithelial lined lower (Barrett’s) esophagus. Thorax 28:511–514

    Article  PubMed  CAS  Google Scholar 

  • Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ (2005) Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res 11(7):2478–2485

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Peters CJ, Fitzgerald RC, Gjerset RA (2008) Progressive silencing of p14ARF in oesophageal adenocarcinoma. J Cell Mol Med 2008 9 Apr. [Epub ahead of print]

  • Iijima K, Grant J, McElroy K, Fyfe V, Preston T, McColl KE (2003) Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Carcinogenesis. 24(12):1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Ioannides AS, Henderson DJ, Spitz L, Copp AJ (2003) Role of Sonic hedgehog in the development of the trachea and oesophagus. J Pediatr Surg 38(1):29–36

    Article  PubMed  Google Scholar 

  • Islam A, Banerjee S, Kambhampati S, Baranda J, Banerjee S, Weston AP, Saxena NK, Banerjee SK (2006) Angiogenic switch in Barrett's adenocarcinoma: the role of vascular endothelial growth factor. Front Biosci 1;11:2336–2348

    Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 24;27(55):6920–6929

    Google Scholar 

  • Jenkins GJ, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM, Griffiths PA, Baxter JN (2007) Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: The potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis 28(1):136–142

    Article  PubMed  CAS  Google Scholar 

  • Jethwa P, Naqvi M, Hardy RG, Hotchin NA, Roberts S, Spychal R, Tselepis C (2008) Overexpression of Slug is associated with malignant progression of esophageal adenocarcinoma. World J Gastroenterol 21;14(7):1044–1052

    Google Scholar 

  • Jin Z, Cheng Y, Olaru A, Kan T, Yang J, Paun B, Ito T, Hamilton JP, David S, Agarwal R, Selaru FM, Sato F, Abraham JM, Beer DG, Mori Y, Shimada Y, Meltzer SJ (2008) Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer 15;123(10):2331–2336

    Google Scholar 

  • Jochem VJ, Fuerst PA, Fromkes JJ (1992) Familial Barrett’s esophagus associated with adenocarcinoma. Gastroenterology 102:1400–1402

    PubMed  CAS  Google Scholar 

  • Johns BA (1952) Developmental changes in the oesophageal epithelium in man. J Anat 86:431–442

    PubMed  CAS  Google Scholar 

  • Johnston MH (2005) Technology insight: ablative techniques for Barrett’s esophagus–current and emerging trends. Nat Clin Pract Gastroenterol Hepatol 2(7):323–330

    Article  PubMed  Google Scholar 

  • Jolly AJ, Wild CP, Hardie LJ (2004) Acid and bile salts induce DNA damage in human oesophageal cell lines. Mutagenesis 19(4):319–324

    Article  PubMed  CAS  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents DNA Repair (Amst) 1;6(8):1079–1099

    Google Scholar 

  • Kala Z, Dolina J, Marek F, Izakovicova Holla L (2007) Polymorphisms of glutathione S-transferase M1, T1 and P1 in patients with reflux esophagitis and Barrett’s esophagus. J Hum Genet 52:527–534

    Article  PubMed  Google Scholar 

  • Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ. (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 15;92(22):1805–1811

    Google Scholar 

  • Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y (2006) Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55(1):16–25

    Article  PubMed  CAS  Google Scholar 

  • Keenan ID, Sharrard RM, Isaacs HV (2006) FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 15;299(2):478–488

    Google Scholar 

  • Kendall BJ, Macdonald GA, Hayward NK, Prins JB, Brown I, Walker N, Pandeya N, Green AC, Webb PM, Whiteman DC (2008) Leptin and the risk of Barrett’s oesophagus. Gut 57:448–454

    Article  PubMed  CAS  Google Scholar 

  • Kuester D, El-Rifai W, Peng D, Ruemmele P, Kroeckel I, Peters B, Moskaluk CA, Stolte M, Mönkemüller K, Meyer F, Schulz HU, Hartmann A, Roessner A, Schneider-Stock R (2008) Silencing of MGMT expression by promoter hypermethylation in the metaplasia–dysplasia-carcinoma sequence of Barrett’s esophagus. Cancer Lett 2008, 20 Nov [Epub ahead of print]

  • Kumble S, Omary MB, Fajardo LF, Triadafilopoulos G (1996). Multifocal heterogeneity in villin and Ep-CAM expression in Barrett’s esophagus. Int J Cancer 28;66(1):48-54

    Google Scholar 

  • Lagergren J, Bergström R, Lindgren A, Nyrén O (1999) Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 18;340(11):825-31

    Google Scholar 

  • Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2(3):149–156

    Article  PubMed  CAS  Google Scholar 

  • Lao-Sirieix P, Lovat L, Fitzgerald RC (2007) Cyclin A immunocytology as a risk stratification tool for Barrett’s esophagus surveillance. Clin Cancer Res 15;13(2 Pt 1):659-665

    Google Scholar 

  • Lee JM, Lee YC, Yang SY, Yang PW, Luh SP, Lee CJ, Chen CJ, Wu MT (2001) Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. Int J Cancer 20;95(4):240-246

    Google Scholar 

  • Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA (2008) Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human. Barrett’s oesophagus Gut 57(8):1041–1048

    Article  CAS  Google Scholar 

  • Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JB, Zon LI, Daley GQ (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 10;2(1):72–82

    Google Scholar 

  • Lichtenstein DR, Cash BD, Davila R, Baron TH, Adler DG, Anderson MA, Dominitz JA, Gan SI, Harrison ME 3rd, Ikenberry SO, Qureshi WA, Rajan E, Shen B, Zuckerman MJ, Fanelli RD, VanGuilder T (2007) Role of endoscopy in the management of GERD. Gastrointest Endosc 66(2):219–224

    Article  PubMed  Google Scholar 

  • Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhou W, Yeap BY, Su L, Wain JC, Poneros JM, Nishioka NS, Lynch TJ, Christiani DC (2007a) XRCC1 and XPD polymorphisms and esophageal adenocarcinoma risk. Carcinogenesis 28(6):1254–1258

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, Myers R, Chen Z, Patterson AP, Yang CS, Chen X (2007b) Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis 28(2):488–496

    Article  PubMed  CAS  Google Scholar 

  • Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 15;64(10):3414–3427

    Google Scholar 

  • Marchetti M, Caliot E, Pringault E (2003) Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci 15;116(Pt 8):1429–1436

    Google Scholar 

  • McManus DT, Olaru A, Meltzer SJ (2004) Biomarkers of esophageal adenocarcinoma and Barrett’s esophagus Cancer Res 1;64(5):1561–1569

    Google Scholar 

  • Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, Rosmolen WD, Bergman JJ, VAn Marle J, Wang KK, Peppelenbosch MP, Krishnadath KK (2007) Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132(7):2412–2421

    Article  PubMed  CAS  Google Scholar 

  • Miller CT, Moy JR, Lin L, Schipper M, Normolle D, Brenner DE, Iannettoni MD, Orringer MB, Beer DG (2003) Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res 15;9(13):4819–4825

    Google Scholar 

  • Möbius C, Stein HJ, Spiess C, Becker I, Feith M, Theisen J, Gais P, Jütting U, Siewert JR (2005) COX2 expression, angiogenesis, proliferation and survival in Barrett’s cancer. Eur J Surg Oncol 31(7):755–759

    Google Scholar 

  • Mohammed I, Cherkas LF, Riley SA, Spector TD, Trudgill NJ (2003) Genetic influences in gastro-oesophageal reflux disease; a twin study. Gut 52:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116(3):702–731

    Article  PubMed  CAS  Google Scholar 

  • Moons LM, Kuipers EJ, Rygiel AM, Groothuismink AZ, Geldof H, Bode WA, Krishnadath KK, Bergman JJ, van Vliet AH, Siersema PD, Kusters JG (2007) COX-2 CA-haplotype is a risk factor for the development of esophageal adenocarcinoma. Am J Gastroenterol 102(11):2373–2379

    Article  PubMed  CAS  Google Scholar 

  • Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE (2001) Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol 96(4):990–996

    PubMed  CAS  Google Scholar 

  • Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 21;102(25):8905–8909

    Google Scholar 

  • Murphy SJ, Hughes AE, Patterson CC, Anderson LA, Watson RG, Johnston BT, Comber H, McGuigan J, Reynolds JV, Murray LJ (2007) A population-based association study of SNPs of GSTP1, MnSOD, GPX2 and Barrett’s esophagus and esophageal adenocarcinoma. Carcinogenesis 28(6):1323–1328

    Article  PubMed  CAS  Google Scholar 

  • Murray L, Sedo A, Scott M, McManus D, Sloan JM, Hardie LJ, Forman D, Wild CP (2006) TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut 55(10):1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Neshat K, Sanchez CA, Galipeau PC, Blount PL, Levine DS, Joslyn G, Reid BJ (1994) p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology 106(6):1589–1595

    PubMed  CAS  Google Scholar 

  • Noffsinger A (2003) Neoplastic risk assessment in Barrett’s esophagus: How far have we come? Hum Pathol 34(10):965–967

    Article  PubMed  Google Scholar 

  • O’Donovan N, Crown J (2007) EGFR and HER-2 antagonists in breast cancer. Anticancer Res 27(3A):1285–1294

    PubMed  Google Scholar 

  • Ochs-Balcom HM, Falk G, Grady WM, Kinnard M, Willis J, Elston R, Eng C, Chak A (2007) Consortium approach to identifying genes for Barrett’s esophagus and esophageal adenocarcinoma. Transl Res 150(1):3–17

    Article  PubMed  CAS  Google Scholar 

  • Odze RD, Lauwers GY (2008) Histopathology of Barrett’s esophagus after ablation and endoscopic mucosal resection therapy. Endoscopy 40(12):1008–1015

    Article  PubMed  CAS  Google Scholar 

  • Olliver JR, Hardie LJ, Dexter S, Chalmers D, Wild CP (2003) DNA damage levels are raised in Barrett’s oesophageal mucosa relative to the squamous epithelium of the oesophagus. Biomarkers 8(6):509–521

    Article  PubMed  CAS  Google Scholar 

  • Onwuegbusi BA, Aitchison A, Chin SF, Kranjac T, Mills I, Huang Y, Lao-Sirieix P, Caldas C, Fitzgerald RC (2006) Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 55(6):764–774

    Article  PubMed  CAS  Google Scholar 

  • Owonikoko T, Rees M, Gabbert HE, Sarbia M (2002) Intratumoral genetic heterogeneity in Barrett adenocarcinoma. Am J Clin Pathol 117(4):558–566

    Article  PubMed  CAS  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 22;18(49):6853–6866

    Google Scholar 

  • Peng D, Sheta EA, Powell SM, Moskaluk CA, Washington K, Goldknopf IL, El-Rifai W (2008) Alterations in Barrett’s-related adenocarcinomas: a proteomic approach. Int J Cancer 122(6):1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Persons DL, Croughan WS, Borelli KA, Cherian R (1998) Interphase cytogenetics of esophageal adenocarcinoma and precursor lesions. Cancer Genet Cytogenet 106(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Peters CJ, Fitzgerald RC (2007) Systematic review: the application of molecular pathogenesis to prevention and treatment of oesophageal adenocarcinoma. Aliment Pharmacol Ther 1;25(11):1253–1269

    Google Scholar 

  • Peters FP, Krishnadath KK, Rygiel AM, Curvers WL, Rosmolen WD, Fockens P, Ten Kate FJ, van Baal JW, Bergman JJ (2007) Stepwise radical endoscopic resection of the complete Barrett’s esophagus with early neoplasia successfully eradicates pre-existing genetic abnormalities. Am J Gastroenterol 102(9):1853–1861

    Article  PubMed  Google Scholar 

  • Playford RJ (2006) New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut 55(4):442

    Article  PubMed  CAS  Google Scholar 

  • Pohl H, Welch HG (2005) The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 19;97(2):142–146

    Google Scholar 

  • Prasad GA, Wang KK, Halling KC, Buttar NS, Wongkeesong LM, Zinsmeister AR, Brankley SM, Fritcher EG, Westra WM, Krishnadath KK, Lutzke LS, Borkenhagen LS (2008) Utility of biomarkers in prediction of response to ablative therapy in Barrett’s esophagus. Gastroenterology 135(2):370–379

    Article  PubMed  CAS  Google Scholar 

  • Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL (2006) Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74(7):422–437

    Article  PubMed  CAS  Google Scholar 

  • Raskind WH, Norwood T, Levine DS, Haggitt RC, Rabinovitch PS, Reid BJ (1992) Persistent clonal areas and clonal expansion in Barrett’s esophagus. Cancer Res 15;52(10):2946–2950

    Google Scholar 

  • Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 1;66(19):9583–9590

    Google Scholar 

  • Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS (2000) Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol 95:1669–1676

    PubMed  CAS  Google Scholar 

  • Robertson EV, Jankowski JA (2008) Genetics of gastroesophageal cancer: paradigms, paradoxes, and prognostic utility. Am J Gastroenterol 103(2):443–449

    Article  PubMed  Google Scholar 

  • Roman S, Pétré A, Thépot A, Hautefeuille A, Scoazec JY, Mion F, Hainaut P (2007) Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol Gastrointest Liver Physiol 293(1):G45–G53

    Article  PubMed  CAS  Google Scholar 

  • Romero Y, Cameron AJ, Locke GR 3rd, Schaid DJ, Slezak JM, Branch CD, Melton LJ 3rd (1997) Familial aggregation of gastroesophageal reflux in patients with Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 113(5):1449–1456

    Google Scholar 

  • Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, Vieth M, Stolte M, Talley NJ, Agréus L (2005) Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129(6):1825–1831

    Article  PubMed  Google Scholar 

  • Rudolph RE, Vaughan TL, Kristal AR, Blount PL, Levine DS, Galipeau PC, Prevo LJ, Sanchez CA, Rabinovitch PS, Reid BJ (2003) Serum selenium levels in relation to markers of neoplastic progression among persons with Barrett’s esophagus. J Natl Cancer Inst 21;95(10):750–757

    Google Scholar 

  • Rundhaug JE (2003) Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res Feb;9(2):551–554

    Google Scholar 

  • Sabo E, Meitner PA, Tavares R, Corless CL, Lauwers GY, Moss SF, Resnick MB (2008) Expression analysis of Barrett’s esophagus-associated high-grade dysplasia in laser capture microdissected archival tissue. Clin Cancer Res 15;14(20):6440–6448

    Google Scholar 

  • Sarbia M, Geddert H, Klump B, Kiel S, Iskender E, Gabbert HE (2004) Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int J Cancer 20;111(2):224–228

    Google Scholar 

  • Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959:24–29

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236

    Article  PubMed  CAS  Google Scholar 

  • Schnell TG (2004) Acid suppression and adenocarcinoma of the esophagus: cause or cure. Am J Gastroneterol 99:1884–1886

    Article  Google Scholar 

  • Schnell TG, Sontag SJ, Chejfec G, Aranha G, Metz A, O’Connell S, Seidel UJ, Sonnenberg A (2001) Long-term nonsurgical management of Barrett’s esophagus with high-grade dysplasia. Gastroenterology 120:1607–1619

    Article  PubMed  CAS  Google Scholar 

  • Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E, Hamilton J, Kan T, Krasna MJ, Beer DG, Pepe MS, Abraham JM, Feng Z, Schmiegel W, Greenwald BD, Meltzer SJ (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 9;24(25):4138–4148

    Google Scholar 

  • Seery JP (2002) Stem cells of the oesophageal epithelium. J Cell Sci 1;115(Pt 9):1783–1789

    Google Scholar 

  • Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS (2000) Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119(2):333–338

    Article  PubMed  CAS  Google Scholar 

  • Sharma P (2004) Review article: prevalence of Barrett’s oesophagus and metaplasia at the gastro-oesophageal junction. Aliment Pharmacol Ther 20(Suppl 5):48–54

    Article  PubMed  Google Scholar 

  • Sherr CJ (2004) Principles of tumor suppression Cell. 23;116(2):235–246

  • Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation Dev Biol 1;279(1):125–141

    Google Scholar 

  • Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G (2000) Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: Ex vivo induction by bile salts and acid exposure. Gastroenterology 118:487–496

    Article  PubMed  CAS  Google Scholar 

  • Sihvo EI, Salminen JT, Rantanen TK, Rämö OJ, Ahotupa M, Färkkilä M, Auvinen MI, Salo JA (2002) Oxidative stress has a role in malignant transformation in Barrett’s oesophagus. Int J Cancer 20;102(6):551–555

    Google Scholar 

  • Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG (1997) CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113(2):478–486

    Article  PubMed  CAS  Google Scholar 

  • Sirieix PS, O’Donovan M, Brown J, Save V, Coleman N, Fitzgerald RC (2003) Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett’s esophagus. Clin Cancer Res 9(7):2560–2566

    PubMed  CAS  Google Scholar 

  • Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Song S, Guha S, Liu K, Buttar NS, Bresalier RS (2007) COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 56(11):1512–1521

    Article  PubMed  CAS  Google Scholar 

  • Souza RF, Lunsford T, Ramirez RD, Zhang X, Lee EL, Shen Y, Owen C, Shay JW, Morales C, Spechler SJ (2007) GERD is associated with shortened telomeres in the squamous epithelium of the distal esophagus. Am J Physiol Gastrointest Liver Physiol 293(1):G19–G24

    Article  PubMed  CAS  Google Scholar 

  • Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295(2):G211–G218

    Google Scholar 

  • Spechler SJ, Goyal RK (1996) The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology 110(2):614–621

    Article  PubMed  CAS  Google Scholar 

  • Stairs DB, Nakagawa H, Klein-Szanto A, Mitchell SD, Silberg DG, Tobias JW, Lynch JP, Rustgi AK (2008) Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS ONE 3(10):e3534 Epub 2008 Oct 27

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE (2005) Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut 54(11):1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Takubo K, Aida J, Naomoto Y, Sawabe M, Arai T, Shiraishi H, Matsuura M, Ell C, May A, Pech O, Stolte M, Vieth M (2009) Cardiac rather than intestinal-type background in endoscopic resection specimens of minute Barrett adenocarcinoma. Hum Pathol 40(1):65–74

    Article  PubMed  Google Scholar 

  • Theisen J, Stein HJ, Feith M, Kauer WK, Dittler HJ, Pirchi D, Siewert JR (2006) Preferred location for the development of esophageal adenocarcinoma within a segment of intestinal metaplasia. Surg Endosc 20(2):235–238

    Article  PubMed  CAS  Google Scholar 

  • Tobey NA, Carson JL, Alkiek RA, Orlando RC (1996) Dilated intercellular spaces: a morphological feature of acid reflux-damaged human esophageal epithelium. Gastroenterology 111(5):1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Trudgill NJ, Kapur KC, Riley SA (1999) Familial clustering of reflux symptoms. Am J Gastroenterol 94(5):1172–1178

    Google Scholar 

  • Tuynman JB, Lagarde SM, Ten Kate FJ, Richel DJ, van Lanschot JJ (2008) Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma. Br J Cancer 25;98(6):1102–1108

    Google Scholar 

  • Vaezi MF, Richter JE (1996) Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111(5):1192–1199

    Article  PubMed  CAS  Google Scholar 

  • van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, Wang KK, Peppelenbosch MP, Krishnadath KK (2005) A comparative analysis by SAGE of gene expression profiles of Barrett esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 129:1274–1281

    Article  PubMed  CAS  Google Scholar 

  • van Heemst D, den Reijer PM, Westendorp RG (2007) Ageing or cancer: a review on the role of caretakers and gatekeepers. Eur J Cancer 43(15):2144–2152

    Article  PubMed  Google Scholar 

  • Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, Casson AG (2008) Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Mol Carcinog 47(4):275–285

    Article  PubMed  CAS  Google Scholar 

  • von Rahden BH, Stein HJ, Feith M, Pühringer F, Theisen J, Siewert JR, Sarbia M (2006) Overexpression of TGF-beta1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog 45(10):786–794

    Article  CAS  Google Scholar 

  • Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, Xu Y, Olaru A, Berki AT, Li H, Schulmann K, Kan T, Hamilton JP, Paun B, Yu MM, Jin Z, Cheng Y, Ito T, Mantzur C, Greenwald BD, Meltzer SJ (2006) Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 1;25(23):3346–3356

    Google Scholar 

  • Wang KK, Sampliner RE, Practice Parameters Committee of the American College of Gastroenterology (2008) Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol 103(3):788–797

    Article  PubMed  Google Scholar 

  • Watson GA, Zhang X, Stang MT, Levy RM, Queiroz de Oliveira PE, Gooding WE, Christensen JG, Hughes SJ (2006) Inhibition of c-Met as a therapeutic strategy for esophageal adenocarcinoma. Neoplasia 8(11):949–955

    Article  PubMed  CAS  Google Scholar 

  • Watts GS, Tran NL, Berens ME, Bhattacharyya AK, Nelson MA, Montgomery EA, Sampliner RE (2007) Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int J Cancer 121(10):2132–2139

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Fitzgerald RC (2005) Epidemiologic risk factors for Barrett’s esophagus and associated adenocarcinoma. Clin Gastroenterol Hepatol 3:1–10

    Article  PubMed  CAS  Google Scholar 

  • Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, Blount PL, Reid BJ (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 15;61(22):8284–8289

    Google Scholar 

  • Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF (2005) CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA 24;102(21):7565–7570

    Google Scholar 

  • Yachimski PS, Mino-Kenudson M, Sherwood ME, Puricelli WP, Nishioka NS, Lauwers GY (2008) Cyclooxygenase-2 expression in esophageal epithelium before and after photodynamic therapy for Barrett’s esophagus. Gastroenterology 134(4) Suppl 1:82

    Google Scholar 

  • Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 29;270(52):31315–31320

    Google Scholar 

  • Ye W, Chow WH, Lagergren J, Yin L, Nyrén O (2001) Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 121(6):1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Yousef F, Cardwell C, Cantwell MM, Galway K, Johnston BT, Murray L (2008) The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-analysis. Am J Epidemiol 1;168(3):237–249

    Google Scholar 

  • Zaman MS, Hur C, Jones MP et al (2001) Concordance of reflux among monozygotic and dizygotic twins. Gastroenterology 120(Suppl 5):A418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca C. Fitzgerald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Pietro, M., Fitzgerald, R.C. Barrett’s oesophagus: an ideal model to study cancer genetics. Hum Genet 126, 233–246 (2009). https://doi.org/10.1007/s00439-009-0665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0665-2

Keywords

Navigation