Skip to main content
Log in

Evidence of linkage of HDL level variation to APOC3 in two samples with different ascertainment

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The APOA1-C3-A4-A5 gene complex encodes genes whose products are implicated in the metabolism of HDL and/or triglycerides. Although the relationship between polymorphisms in this gene cluster and dyslipidemias was first reported more than 15 years ago, association and linkage results have remained inconclusive. This is due, in part, to the oligogenic and multivariate nature of dyslipidemic phenotypes. Therefore, we investigate evidence of linkage of APOC3 and HDL using two samples of dyslipidemic pedigrees: familial combined hyperlipidemia (FCHL) and isolated low-HDL (ILHDL). We used a strategy that deals with several difficulties inherent in the study of complex traits: by using a Bayesian Markov Chain Monte Carlo (MCMC) approach we allow for oligogenic trait models, as well as simultaneous incorporation of covariates, in the context of multipoint analysis. By using this approach on extended pedigrees we provide evidence of linkage of APOC3 and HDL level variation in two samples with different ascertainment. In addition to APOC3, we estimate that two to three genes, each with a substantial effect on total variance, are responsible for HDL variation in both data sets. We also provide evidence, using the FCHL data set, for a pleiotropic effect between HDL, HDL3 and triglycerides at the APOC3 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d.
Fig. 2a, b.
Fig. 3a–c.
Fig. 4a–d.
Fig. 5a–f.
Fig. 6a–d.
Fig. 7a, b.

Similar content being viewed by others

References

  • Albrink MJ, Krauss RM, Lindgrem FT, von der GJ, Pan S, Wood PD (1980) Intercorrelations among plasma high density lipoprotein, obesity and triglycerides in a normal population. Lipids 15:668–676

    CAS  PubMed  Google Scholar 

  • Allison DB, Heo M, Schork NJ, Wong SL, Elston RC (1998) Extreme selection strategies in gene mapping studies of oligogenic quantitative traits do not always increase power. Hum Hered 48:97–107

    CAS  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    CAS  PubMed  Google Scholar 

  • Almasy L, Hixson JE, Rainwater DL, Cole S, Williams JT, Mahaney MC, VandeBerg JL, Stern MP, MacCluer JW, Blangero J (1999) Human pedigree-based quantitative-trait-locus mapping: localization of two genes influencing HDL-cholesterol metabolism. Am J Hum Genet 64:1686–1693

    Google Scholar 

  • Aouizerat BE, Allayee H, Cantor RM, Dallinga-Thie GM, Lanning CD, de Bruin TW, Lusis AJ, Rotter JI (1999a) Linkage of a candidate gene locus to familial combined hyperlipidemia: lecithin:cholesterol acyltransferase on 16q. Arterioscler Thromb 19:2730–2736

    CAS  PubMed  Google Scholar 

  • Aouizerat BE, Allayee H, Cantor RM, Davis RC, Lanning CD, Wen PZ, Dallinga-Thie GM, de Bruin TW, Rotter JI, Lusis AJ (1999b) A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11. Am J Hum Genet 65:397–412

    Google Scholar 

  • Arnon R, Sehayek E, Eisenberg S (1993) Disparate effects of a triglyceride lowering diet and of bezafibrate on the HDL system: a study in patients with hypertriglyceridaemia and low HDL-cholesterol levels. Eur J Clin Invest 23:492–498

    CAS  PubMed  Google Scholar 

  • Arya R, Duggirala R, Almasy L, Rainwater DL, Mahaney MC, Cole S, Dyer TD, Williams K, Leach RJ, Hixson JE, MacCluer JW, O'Connell P, Stern MP, Blangero J (2002) Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet 30:102–105

    CAS  PubMed  Google Scholar 

  • Austin MA, King MC, Bawol RD, Hulley SB, Friedman GD (1987) Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. Am J Epidemiol 125:308–318

    CAS  PubMed  Google Scholar 

  • Bachorik PS, Albers JJ (1986) Precipitation methods for quantitation of lipoproteins. Methods Enzymol 129:78–100

    CAS  PubMed  Google Scholar 

  • Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    CAS  PubMed  Google Scholar 

  • Brinton EA, Eisenberg S, Breslow JL (1994) Human HDL cholesterol levels are determined by apoA-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb 14:707–720

    CAS  PubMed  Google Scholar 

  • Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Hayden MR. (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    CAS  PubMed  Google Scholar 

  • Brunzell JD, Schrott HG, Motulsky AG, Bierman EL (1976) Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism 25:313–320

    CAS  PubMed  Google Scholar 

  • Brunzell JD, Albers JJ, Chait A, Grundy SM, Groszek E, McDonald GB (1983) Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 24:147–155

    CAS  PubMed  Google Scholar 

  • Bucher KD, Friedlander Y, Kaplan EB, Namboodiri KK, Kark JD, Eisenberg S, Stein Y, Rifkind BM (1988) Biological and cultural sources of familial resemblance in plasma lipids: a comparison between North America and Israel — the Lipid Research Clinics Program. Genet Epidemiol 5:17–33

    CAS  PubMed  Google Scholar 

  • Cardon LR, Fulker DW (1994) The power of interval mapping of quantitative trait loci, using selected sib pairs. Am J Hum Genet. 55:825–833

    Google Scholar 

  • Carey G, Williamson J (1991) Linkage analysis of quantitative traits: increased power by using selected samples. Am J Hum Genet 49:786–796

    CAS  PubMed  Google Scholar 

  • Chapman NH, Leutenegger AL, Badzioch MD, Bogdan M, Conlon EM, Daw EW, Gagnon F, Li N, Maia JM, Wijsman EM, Thompson EA (2001) The importance of connections: joining components of the Hutterite pedigree. Genet Epidemiol 21 Suppl 1:S230-S235

    Google Scholar 

  • Cheung P, Kao FT, Law ML, Jones C, Puck TT, Chan L (1984) Localization of the structural gene for human apolipoprotein A-I on the long arm of human chromosome 11. Proc Natl Acad Sci USA 81:508–511

    CAS  PubMed  Google Scholar 

  • Cohen JC, Wang Z, Grundy SM, Stoesz MR, Guerra R (1994) Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest 94:2377–2384

    CAS  PubMed  Google Scholar 

  • Coon H, Myers RH, Borecki IB, Arnett DK, Hunt SC, Province MA, Djousse L, Leppert MF (2000) Replication of linkage of familial combined hyperlipidemia to chromosome 1q with additional heterogeneous effect of apolipoprotein A-I/C-III/A-IV locus. The NHLBI Family Heart Study. Arterioscler Thromb 20:2275–2280

    PubMed  Google Scholar 

  • Coon H, Leppert MF, Eckfeldt JH, Oberman A, Myers RH, Peacock JM, Province MA, Hopkins PN, Heiss G (2001) Genome-wide linkage analysis of lipids in the Hypertension Genetic Epidemiology Network (HyperGEN) Blood Pressure Study. Arterioscler Thromb 21:1969–1976

    CAS  Google Scholar 

  • Coon H, Eckfeldt JH, Leppert MF, Myers RH, Arnett DK, Heiss G, Province MA, Hunt SC (2002) A genome-wide screen reveals evidence for a locus on chromosome 11 influencing variation in LDL cholesterol in the NHLBI Family Heart Study. Hum Genet 111:263–269

    CAS  PubMed  Google Scholar 

  • Daw EW, Heath SC, Wijsman EM (1999) Multipoint oligogenic analysis of age-at-onset data with applications to Alzheimer's disease pedigrees. Am J Hum Genet 64:839–851

    CAS  PubMed  Google Scholar 

  • Després JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B (2000) HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis 153:263–272

    Article  CAS  PubMed  Google Scholar 

  • Devlin CM, Prenger VL, Miller M (1998) Linkage of the apo CIII microsatellite with isolated low high-density lipoprotein cholesterol. Hum Genet 102:273–281

    CAS  PubMed  Google Scholar 

  • Duggirala R, Williams JT, Williams-Blangero S, Blangero J (1997) A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol 14:987–992

    CAS  PubMed  Google Scholar 

  • Dyer TD, Blangero J, Williams JT, Goring HH, Mahaney MC (2001) The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 21 Suppl 1:S236-S243

    Google Scholar 

  • Eaves L, Meyer J (1994) Locating human quantitative trait loci: guidelines for the selection of sibling pairs for genotyping. Behav Genet 24:443–455

    Google Scholar 

  • Edwards KL, Mahaney MC, Motulsky AG, Austin MA (1999) Pleiotropic genetic effects on LDL size, plasma triglyceride, and HDL cholesterol in families. Arterioscler Thromb 19:2456–2464

    CAS  PubMed  Google Scholar 

  • Elbein SC, Hasstedt SJ (2002) Quantitative trait linkage analysis of lipid-related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q. Diabetes 51:528–535

    CAS  PubMed  Google Scholar 

  • Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO, Kannel WB, Rosenman R, Schwartz JT, Wagner JO (1977) The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol 106:284–285

    CAS  PubMed  Google Scholar 

  • Forrest WF, Feingold E (2000) Composite statistics for QTL mapping with moderately discordant sibling pairs. Am J Hum Genet 66:1642–1660

    CAS  PubMed  Google Scholar 

  • Friedlander Y, Kark JD, Stein Y (1986) Complex segregation analysis of low levels of plasma high-density lipoprotein cholesterol in a sample of nuclear families in Jerusalem. Genet Epidemiol 3:285–297

    CAS  PubMed  Google Scholar 

  • Genest JJ Jr, Martin-Munley SS, McNamara JR, Ordovas JM, Jenner J, Myers RH, Silberman SR, Wilson PW, Salem DN, Schaefer EJ (1992) Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85:2025–2033

    PubMed  Google Scholar 

  • Glueck CJ, Laskarzewski PM, Suchindran CM, Chambless LE, Barrett-Connor E, Stewart P, Heiss G, Tyroler HA (1986) Progeny's lipid and lipoprotein levels by parental mortality. The Lipid Research Clinics Program Prevalence Study. Circulation 73:I51-I61

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52:1544–1568

    CAS  PubMed  Google Scholar 

  • Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR Jr, Bangdiwala S, Tyroler HA (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15

    CAS  PubMed  Google Scholar 

  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714

    CAS  PubMed  Google Scholar 

  • Grundy SM, Chait A, Brunzell JD (1987) Familial combined hyperlipidemia workshop. Arterioscler Thromb 7:203–207

    Google Scholar 

  • Hamsten A, Iselius L, Dahlen G, de Faire U (1986) Genetic and cultural inheritance of serum lipids, low and high density lipoprotein cholesterol and serum apolipoproteins A-I, A-II and B. Atherosclerosis 60:199–208

    CAS  PubMed  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    CAS  PubMed  Google Scholar 

  • Hayden MR, Kirk H, Clark C, Frohlich J, Rabkin S, McLeod R, Hewitt J (1987) DNA polymorphisms in and around the Apo-A1-CIII genes and genetic hyperlipidemias. Am J Hum Genet 40:421–30

    CAS  PubMed  Google Scholar 

  • Heath SC (1997) Markov Chain Monte Carlo Segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    CAS  PubMed  Google Scholar 

  • Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM (1997) MCMC Segregation and linkage analysis. Genet Epidemiol 14:1011–1016

    CAS  PubMed  Google Scholar 

  • Hegele RA, Brunt JH, Connelly PW (1995) Multiple genetic determinants of variation of plasma lipoproteins in Alberta Hutterites. Arterioscler Thromb 15:861–871

    CAS  PubMed  Google Scholar 

  • Heiba IM, DeMeester CA, Xia YR, Diep A, George VT, Amos CI, Srinivasan SR, Berenson GS, Elston RC, Lusis AJ (1993) Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: analysis of a large pedigree from the Bogalusa Heart Study. Am J Med Genet 47:875–883

    CAS  PubMed  Google Scholar 

  • Heller DA, Pedersen NL, de Faire U, McClearn GE (1994) Genetic and environmental correlations among serum lipids and apolipoproteins in elderly twins reared together and apart. Am J Hum Genet 55:1255–67

    CAS  PubMed  Google Scholar 

  • Hinrichs A, Reich T (2001) Markov chain Monte Carlo linkage analysis of complex quantitative phenotypes. Genet Epidemiol 21 Suppl 1:S662-S667

    Google Scholar 

  • Hong SH, Park WH, Lee CC, Song JH, Kim JQ (1997) Association between genetic variations of apo AI-CIII-AIV cluster gene and hypertriglyceridemic subjects. Clin Chem 43:13–17

    CAS  PubMed  Google Scholar 

  • Hunt SC, Hasstedt SJ, Kuida H, Stults BM, Hopkins PN, Williams RR (1989) Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol 129:625–638

    CAS  PubMed  Google Scholar 

  • Imperatore G, Knowler WC, Pettitt DJ, Kobes S, Fuller JH, Bennett PH, Hanson RL (2000) A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb 20:2651–2656

    CAS  PubMed  Google Scholar 

  • Jarvik GP, Wijsman EM, Little RE, Albers JJ, Motulsky AG, Brunzell JD (1993) Host and environmental effects on plasma apolipoprotein B. Int J Clin Lab Res 23:215–220

    CAS  PubMed  Google Scholar 

  • Jarvik GP, Brunzell JD, Austin MA, Krauss RM, Motulsky AG, Wijsman EM (1994) Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb 14:1687–1694

    CAS  PubMed  Google Scholar 

  • Kamboh MI, Aston CE, Nestlerode CM, McAllister AE, Hamman RF (1996) Haplotype analysis of two APOA1/MspI polymorphisms in relation to plasma levels of apo A-I and HDL-cholesterol. Atherosclerosis 127:255–262

    CAS  PubMed  Google Scholar 

  • Knoblauch H, Busjahn A, Munter S, Nagy Z, Faulhaber HD, Schuster H, Luft FC (1997) Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. Arterioscler Thromb 17:2054–2060

    CAS  PubMed  Google Scholar 

  • Knoblauch H, Muller-Myhsok B, Busjahn A, Ben Avi L, Bahring S, Baron H, Heath SC, Uhlmann R, Faulhaber HD, Shpitzen S, Aydin A, Reshef A, Rosenthal M, Eliav O, Muhl A, Lowe A, Schurr D, Harats D, Jeschke E, Friedlander Y, Schuster H, Luft FC, Leitersdorf E (2000) A cholesterol-lowering gene maps to chromosome 13q. Am J Hum Genet 66:157–166

    Google Scholar 

  • Knuiman MW, Divitini ML, Welborn TA, Bartholomew HC (1996) Familial correlations, cohabitation effects, and heritability for cardiovascular risk factors. Ann Epidemiol 6:188–194

    CAS  PubMed  Google Scholar 

  • Kuusi T, Kesaniemi Y, Vuoristo M, Miettinen T, Koskenvuo M (1987) Inheritance of high-density-lipoprotein and lipoprotein-lipase and hepatic lipase activity. Arterioscler Thromb 7:421-425

    CAS  PubMed  Google Scholar 

  • Lamarche B, Després JP, Moorjani S, Cantin B, Dagenais GR, Lupien PJ (1996) Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease. Results from the Québec cardiovascular study. Atherosclerosis 119:235–245

    PubMed  Google Scholar 

  • Law SW, Gray G, Brewer HB Jr, Sakaguchi AY, Naylor SL (1984) Human apolipoprotein A-I and C-III genes reside in the p11-q13 region of chromosome 11. Biochem Biophys Res Commun 118:934–942

    CAS  PubMed  Google Scholar 

  • Lilja HE, Soro A, Ylitalo K, Nuotio I, Viikari JS, Salomaa V, Vartiainen E, Taskinen MR, Peltonen L, Pajukanta P (2002) A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster. Atherosclerosis 164:103–111

    CAS  PubMed  Google Scholar 

  • MacCluer JW, Blangero J, Dyer TD, Speer MC (1997) GAW10: simulated family data for a common oligogenic disease with quantitative risk factors. Genet Epidemiol 14:737–742

    CAS  PubMed  Google Scholar 

  • Mahaney MC, Blangero J, Comuzzie AG, VandeBerg JL, Stern MP, MacCluer JW (1995) Plasma HDL cholesterol, triglycerides, and adiposity. A quantitative genetic test of the conjoint trait hypothesis in the San Antonio Family Heart Study. Circulation 92:3240–3248

    CAS  PubMed  Google Scholar 

  • Mahaney MC, Almasy L, Rainwater DL, VandeBerg JL, Cole SA, Hixson JE, Blangero J, MacCluer JW (2003) A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican Americans. Arterioscler Thromb 23:339–345

    CAS  PubMed  Google Scholar 

  • Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, Yu L, Collins JA, van Dam M, Molhuizen HO, Loubster O, Ouellette BF, Sensen CW, Fichter K, Mott S, Denis M, Boucher B, Pimstone S, Genest J, Jr., Kastelein JJ, Hayden MR (1999) Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 354:1341–1346

    CAS  PubMed  Google Scholar 

  • Miller NE (1990) Pharmacotherapy of disorders of plasma lipoprotein metabolism. Am J Cardiol 66:16A-19A

    CAS  PubMed  Google Scholar 

  • Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, Hixson JE, Henkel RD, Sharp RM, Comuzzie AG, VandeBerg JL, Stern MP, MacCluer JW (1996) Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation 94:2159–2170

    CAS  PubMed  Google Scholar 

  • Namboodiri KK, Kaplan EB, Heuch I, Elston RC, Green PP, Rao DC, Laskarzewski P, Glueck CJ, Rifkind BM (1985) The Collaborative Lipid Research Clinics Family Study: biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins. Genet Epidemiol 2:227–254

    CAS  PubMed  Google Scholar 

  • O'Connell DL, Heller RF, Roberts DC, Allen JR, Knapp JC, Steele PL, Silove D (1988) Twin study of genetic and environmental effects on lipid levels. Genet Epidemiol 5:323–341

    CAS  PubMed  Google Scholar 

  • Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, Wilson PW, Schaefer EJ, Tucker K (2002) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 75:38–46

    CAS  PubMed  Google Scholar 

  • Pajukanta P, Terwilliger JD, Perola M, Hiekkalinna T, Nuotio I, Ellonen P, Parkkonen M, Hartiala J, Ylitalo K, Pihlajamaki J, Porkka K, Laakso M, Viikari J, Ehnholm C, Taskinen MR, Peltonen L (1999) Genomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am J Hum Genet 64:1453–1463

    Google Scholar 

  • Pallaud C, Gueguen R, Sass C, Grow M, Cheng S, Siest G, Visvikis S (2001) Genetic influences on lipid metabolism trait variability within the Stanislas Cohort. J Lipid Res 42:1879–1890

    CAS  PubMed  Google Scholar 

  • Peacock JM, Arnett DK, Atwood LD, Myers RH, Coon H, Rich SS, Province MA, Heiss G (2001) Genome scan for quantitative trait loci linked to high-density lipoprotein cholesterol: The NHLBI Family Heart Study. Arterioscler Thromb 21:1823–1828

    CAS  PubMed  Google Scholar 

  • Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Google Scholar 

  • Rao DC, Laskarzewski PM, Morrison JA, Khoury P, Kelly K, Wette R, Russell J, Glueck CJ (1982) The Cincinnati Lipid Research Clinic family study: cultural and biological determinants of lipids and lipoprotein concentrations. Am J Hum Genet 34:888–903

    CAS  PubMed  Google Scholar 

  • Risch N, Zhang H (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268:1584–1589

    Google Scholar 

  • Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355

    Article  CAS  PubMed  Google Scholar 

  • Schamaun O, Olaisen B, Mevag B, Gedde-Dahl T, Jr., Ehnholm C, Teisberg P (1984) The two apolipoprotein loci apo A-I and apo A-IV are closely linked in man. Hum Genet 68:181–184

    CAS  PubMed  Google Scholar 

  • Shmulewitz D, Heath SC (2001) Genome scans for Q1 and Q2 on general population replicates using Loki. Genet Epidemiol 21:S686-S691

    PubMed  Google Scholar 

  • Sieberts SK, Wijsman EM, Thompson EA (2002) Relationship inference from trios of individuals, in the presence of typing error. Am J Hum Genet 70:170–180

    CAS  PubMed  Google Scholar 

  • Silverman D, Ginsburg G, Pasternak R (1993) High-density-lipoprotein subfractions. Am J Med 94:636-645

    CAS  PubMed  Google Scholar 

  • Snowden CB, McNamara PM, Garrison RJ, Feinleib M, Kannel WB, Epstein FH (1982) Predicting coronary heart disease in siblings--a multivariate assessment: the Framingham Heart Study. Am J Epidemiol 115:217–222

    CAS  PubMed  Google Scholar 

  • Song J, Park JW, Park H, Kim JQ (1998) Linkage disequilibrium of the Apo AI-CIII-AIV gene cluster and their relationship to plasma triglyceride, apolipoprotein AI and CIII levels in Koreans. Mol Cells 8:12–18

    CAS  PubMed  Google Scholar 

  • Soro A, Pajukanta P, Lilja HE, Ylitalo K, Hiekkalinna T, Perola M, Cantor RM, Viikari JS, Taskinen MR, Peltonen L (2002) Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1-24.2, and 20q13.11 in Finnish families. Am J Hum Genet 70:1333–1340

    CAS  PubMed  Google Scholar 

  • Sprecher DL, Hein MJ, Laskarzewski PM (1994) Conjoint high triglycerides and low HDL cholesterol across generations. Analysis of proband hypertriglyceridemia and lipid/lipoprotein disorders in first-degree family members. Circulation 90:1177–1184

    CAS  PubMed  Google Scholar 

  • Steiner G (2001) Treating lipid abnormalities in patients with type 2 diabetes mellitus. Am J Cardiol 88:37N-40 N

    CAS  PubMed  Google Scholar 

  • Steinmetz A, Barbaras R, Ghalim N, Clavey V, Fruchart JC, Ailhaud G (1990) Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells. J Biol Chem 265:7859–7863

    CAS  PubMed  Google Scholar 

  • Third JL, Montag J, Flynn M, Freidel J, Laskarzewski P, Glueck CJ (1984) Primary and familial hypoalphalipoproteinemia. Metabolism 33:136–146

    CAS  PubMed  Google Scholar 

  • van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA (2001) Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 276:44512–44520

    Article  PubMed  Google Scholar 

  • Warnick GR (1986) Enzymatic methods for quantification of lipoprotein lipids. Methods Enzymol 129:101–123

    CAS  PubMed  Google Scholar 

  • Waterworth DM, Talmud PJ, Humphries SE, Wicks PD, Sagnella GA, Strazzullo P, Alberti KG, Cook DG, Cappuccio FP (2001) Variable effects of the APOC3−482C>T variant on insulin, glucose and triglyceride concentrations in different ethnic groups. Diabetologia 44:245–248

    CAS  PubMed  Google Scholar 

  • Whitfield JB, Martin NG (1983) Plasma lipids in twins. Environmental and genetic influences. Atherosclerosis 48:265–277

    CAS  PubMed  Google Scholar 

  • Wijsman EM (2002) Joint linkage and segregation analysis using Markov chain Monte Carlo methods. In: Camp NJ, Cox A (eds) Quantitative trait loci, methods and protocols. Methods Mol Biol 195:139–161

    CAS  PubMed  Google Scholar 

  • Wijsman EM, Amos C (1997) Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 14:719–735

    Article  CAS  PubMed  Google Scholar 

  • Wijsman EM, Brunzell J, Jarvik GP, Austin M, Motulsky A, Deeb S (1998) Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI-CIII-AIV gene complex. Arterioscler Thromb 18:215–226

    CAS  PubMed  Google Scholar 

  • Wijsman EM, Peterson D, Leutenegger AL, Thomson JB, Goddard KA, Hsu L, Berninger VW, Raskind WH (2000) Segregation analysis of phenotypic components of learning disabilities. I. Nonword memory and digit span. Am J Hum Genet 67:631–646

    CAS  PubMed  Google Scholar 

  • Williams JT, Duggirala R, Blangero J (1997) Statistical properties of a variance components method for quantitative trait linkage analysis in nuclear families and extended pedigrees. Genet Epidemiol 14:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Williams RR, Hopkins PN, Hunt SC, Wu LL, Hasstedt SJ, Lalouel JM, Ash KO, Stults BM, Kuida H (1990) Population-based frequency of dyslipidemia syndromes in coronary-prone families in Utah. Arch Intern Med 150:582–588

    CAS  PubMed  Google Scholar 

  • Wojciechowski A, Farrall M, Cullen P, Wilson T, Bayliss D, Farren B, Griffin B, Caslake M, Packard C, Shepherd J, Thakker R, Scott J (1991) Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature 349:161–164

    CAS  PubMed  Google Scholar 

  • Xu C-F, Talmud P, Schuster H, Houlston R, Miller G, Humphries S (1994) Association between genetic variation at the APO AI-CIII-AIV gene cluster and familial combined hyperlipidaemia. Clin Genet 46:385–397

    CAS  PubMed  Google Scholar 

  • Yang WS, Nevin DN, Peng R, Brunzell JD, Deeb SS (1995) A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. Proc Natl Acad Sci USA 92:4462–4466

    CAS  PubMed  Google Scholar 

  • Yuan B, Neuman R, Duan S, Weber J, Kwok P, Saccone N, Wu J, Liu K, Schonfeld G (2000) Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1–22. Am J Hum Genet 66:1699–1704

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the families for their participation in the study. We are grateful for the meticulous technical assistance of Andy Louie. Computer support was provided by Hiep D. Nguyen. The database was constructed and maintained by Ted Holzman. Genotyping for the FCHL pedigrees was provided by the NHLBI mammalian genotyping service. Supported by National Institute of Health grant HL30086 and GM46255. F. Gagnon was the recipient of a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR — formally MRC Canada). G. Jarvik was a Pew Biomedical Scholar during the analysis of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Wijsman.

Electronic-database information

Electronic-database information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnon, F., Jarvik, G.P., Motulsky, A.G. et al. Evidence of linkage of HDL level variation to APOC3 in two samples with different ascertainment. Hum Genet 113, 522–533 (2003). https://doi.org/10.1007/s00439-003-1006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-1006-5

Keywords

Navigation