Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR–Multi-Locus Virulence Sequence Typing (CRISPR–MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR’s similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR–MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR–MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The authors confirm that all analyzed data are publicly available for consultation and have been provided in the manuscript or supplementary data file.
References
Acar S, Bulut E, Stasiewicz MJ, Soyer Y (2019) Genome analysis of antimicrobial resistance, virulence, and plasmid presence in Turkish Salmonella serovar Infantis isolates. Int J Food Microbiol 307:108275. https://doi.org/10.1016/j.ijfoodmicro.2019.108275
Alba P, Leekitcharoenphon P, Carfora V, Amoruso R, Cordaro G, Di Matteo P, Ianzano A, Iurescia M, Diaconu EL, Study Group EN, Pedersen SK, Guerra B, Hendriksen RS, Franco A, Battisti A (2020) Molecular epidemiology of Salmonella Infantis in Europe: insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microb Genom 6:e000365. https://doi.org/10.1099/mgen.0.000365
Allard MW (2016) The future of whole-genome sequencing for public health and the clinic. J Clin Microbiol 54:1946–1948. https://doi.org/10.1128/JCM.01082-16
Almeida F, Pitondo-Silva A, Oliveira MA, Falcão JP (2013) Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect Genet Evol 19:145–151. https://doi.org/10.1016/j.meegid.2013.07.004
Almeida F, Medeiros MIC, Rodrigues DP, Allard MW, Falcão JP (2017) Molecular characterization of Salmonella Typhimurium isolated in Brazil by CRISPR-MVLST. J Microbiol Methods 133:55–61. https://doi.org/10.1016/j.mimet.2016.12.020
Brown AC, Chen JC, Watkins LKF, Campbell D, Folster JP, Tate H, Wasilenko J, Van Tubbergen C, Friedman CR (2018) CTX-M-65 extended-spectrum β-lactamase-producing Salmonella enterica serotype Infantis, United States. Emerg Infect Dis 24:2284–2291. https://doi.org/10.3201/eid2412.180500
Bugarel M, Bakker HD, Grout J, Vignaud ML, Loneragan GH, Fach P, Brisabois A (2018) CRISPR-based assay for the molecular identification of highly prevalent Salmonella serotypes. Food Microbiol 71:8–16. https://doi.org/10.1016/j.fm.2017.03.016
Carfora V, Alba P, Leekitcharoenphon P, Ballarò D, Cordaro G, Di Matteo P, Donati V, Ianzano A, Iurescia M, Stravino F, Tagliaferri T, Battisti A, Franco A (2018) Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant Salmonella Infantis in Broiler Chicken Industry, Italy (2016–2017). Front Microbiol 9:1880. https://doi.org/10.3389/fmicb.2018.01880
Castro FA, Santos VR, Martins CHG, Fernandes SA, Zaia JE, Martinez R (2002) Prevalence and antimicrobial susceptibility of Salmonella serotypes in patients from Ribeirão Preto, São Paulo, Brazil, between 1985 and 1999. Braz J Infect Dis 6:244–251. https://doi.org/10.1590/s1413-86702002000500005
Chuma T, Miyasako D, Dahshan H, Takayama T, Nakamoto Y, Shahada F, Akiba M, Okamoto K (2013) Chronological change of resistance to β-lactams in Salmonella enterica serovar Infantis isolated from broilers in Japan. Front Microbiol 4:113. https://doi.org/10.3389/fmicb.2013.00113
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46:W246–W251. https://doi.org/10.1093/nar/gky425
Cunha-Neto AD, Carvalho LA, Carvalho RCT, Dos Prazeres RD, Mano SB, Figueiredo EES, Conte-Junior CA (2018) Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult Sci 97:1373–1381. https://doi.org/10.3382/ps/pex406
Dahshan H, Chuma T, Shahada F, Akiba M, Fujimoto H, Akasaka K, Kamimura Y, Okamoto K (2010) Characterization of antibiotic resistance and the emergence of AmpC-producing Salmonella Infantis from pigs. J Vet Med Sci 72:1437–1442. https://doi.org/10.1292/jvms.10-0186
Deaven AM, Ferreira CM, Reed EA, Chen See JR, Lee NA, Almaraz E, Rios PC, Marogi JG, Lamendella R, Zheng J, Bell RL, Shariat NW (2021) Salmonella genomics and population analyses reveal high inter- and intraserovar diversity in freshwater. Appl Environ Microbiol 87:e02594-e2620. https://doi.org/10.1128/AEM.02594-20
Deng X, Shariat N, Driebe EM, Roe CC, Tolar B, Trees E, Keim P, Zhang W, Dudley EG, Fields PI, Engelthaler DM (2015) Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol 53:212–218. https://doi.org/10.1128/JCM.02332-14
DiMarzio M, Shariat N, Kariyawasam S, Barrangou R, Dudley EG (2013) Antibiotic resistance in Salmonella enterica serovar Typhimurium associates with CRISPR sequence type. Antimicrob Agents Chemother 57:4282–4289. https://doi.org/10.1128/AAC.00913-13
Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, de Romans S, Lim C, Roux C, Passet V, Diancourt L, Guibourdenche M, Issenhuth-Jeanjean S, Achtman M, Brisse S, Sola C, Weill FX (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS ONE 7(5):e36995. https://doi.org/10.1371/journal.pone.0036995
Fonseca EL, Mykytczuk OL, Asensi MD, Reis EM, Ferraz LR, Paula FL, Ng LK, Rodrigues DP (2006) Clonality and antimicrobial resistance gene profiles of multidrug- resistant Salmonella enterica serovar Infantis isolates from four public hospitals in Rio de Janeiro, Brazil. J Clin Microbiol 44:2767–2772. https://doi.org/10.1128/JCM.01916-05
Gelaw AK, Nthaba P, Matle I (2018) Detection of Salmonella from animal sources in South Africa between 2007 and 2014. J S Afr Vet Assoc 89:e1–e10. https://doi.org/10.4102/jsava.v89i0.1643
Gilmour MW, Graham M, Reimer A, Van Domselaar G (2013) Public health genomics and the new molecular epidemiology of bacterial pathogens. Public Health Genom 16:25–30. https://doi.org/10.1159/000342709
Grundmann H, Hori S, Tanner G (2001) Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol 39(11):4190–4192. https://doi.org/10.1128/JCM.39.11.4190-4192.2001
Hindermann D, Gopinath G, Chase H, Negrete F, Althaus D, Zurfluh K, Tall BD, Stephan R, Nüesch-Inderbinen M (2017) Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front Microbiol 8:1322. https://doi.org/10.3389/fmicb.2017.01322
Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167. https://doi.org/10.1126/science.1179555
Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466. https://doi.org/10.1128/jcm.26.11.2465-2466.1988
Kalaba V, Golić B, Sladojević Ž, Kalaba D (2017) Incidence of Salmonella Infantis in poultry meat and products and the resistance of isolates to antimicrobials. IOP Conf Ser Earth Environ Sci 85:012082. https://doi.org/10.1088/1755-1315/85/1/012082
Kisiela D, Laskowska A, Sapeta A, Kuczkowski M, Wieliczko A, Ugorski M (2006) Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152(Pt 5):1337–1346. https://doi.org/10.1099/mic.0.28588-0
Krzyzanowski F Jr, Zappelini L, Martone-Rocha S, Dropa M, Matté MH, Nacache F, Razzolini MT (2014) Quantification and characterization of Salmonella spp. isolates in sewage sludge with potential usage in agriculture. BMC Microbiol 14:263. https://doi.org/10.1186/s12866-014-0263-x
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Li Q, Wang X, Yin K, Hu Y, Xu H, Xie X, Xu L, Fei X, Chen X, Jiao X (2018) Genetic analysis and CRISPR typing of Salmonella enterica serovar Enteritidis from different sources revealed potential transmission from poultry and pig to human. Int J Food Microbiol 266:119–125. https://doi.org/10.1016/j.ijfoodmicro.2017.11.025
Lindqvist N, Pelkonen S (2007) Genetic surveillance of endemic bovine Salmonella Infantis infection. Acta Vet Scand 49:15. https://doi.org/10.1186/1751-0147-49-15
Liu F, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG (2011) Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol 77:1946–1956. https://doi.org/10.1128/AEM.02625-10
Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889. https://doi.org/10.1086/650733
Medeiros MA, Oliveira DC, Rodrigues Ddos P, Freitas DR (2011) Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Rev Panam Salud Publica 30:555–560. https://doi.org/10.1590/s1020-49892011001200010
Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Fedorka-Cray PJ, Landgraf M (2019) Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Sci Rep 9:11058. https://doi.org/10.1038/s41598-019-45838-0
Moraes BA, Cravo CA, Loureiro MM, Solari CA, Asensi MD (2000) Epidemiological analysis of bacterial strains involved in hospital infection in a university hospital from Brazil. Rev Inst Med Trop São Paulo 42:201–207. https://doi.org/10.1590/s0036-46652000000400005
Ortiz-Burgos S (2016) Shannon-Weaver diversity index. In: Kennish MJ (ed) Encyclopedia of estuaries. Encyclopedia of earth sciences series. Springer, Dordrecht
Papadopoulos T, Petridou E, Zdragas A, Mandilara G, Vafeas G, Passiotou M, Vatopoulos A (2017) Multiple clones and low antimicrobial resistance rates for Salmonella enterica serovar Infantis populations in Greece. Comp Immunol Microbiol Infect Dis 51:54–58. https://doi.org/10.1016/j.cimid.2017.02.002
Pessoa-Silva CL, Toscano CM, Moreira BM, Santos AL, Frota AC, Solari CA, Amorim EL, Carvalho Mda G, Teixeira LM, Jarvis WR (2002) Infection due to extended-spectrum beta-lactamase-producing Salmonella enterica subsp. enterica serotype infantis in a neonatal unit. J Pediatr 141(3):381–387. https://doi.org/10.1067/mpd.2002.127279
Ranjbar R, Ahmadi M, Memariani M (2016) Multiple-locus variable-number tandem repeat analysis (MLVA) for genotyping of Salmonella enterica subspecies enterica serotype Infantis isolated from human sources. Microb Pathog 100:299–304. https://doi.org/10.1016/j.micpath.2016.10.012
Realpe-Quintero M, Barba-León J, Pérez-Montaño JA, Pacheco-Gallardo C, González-Aguilar D, Dominguez-Arias RM, Cabrera-Diaz E (2018) Genetic diversity and antimicrobial resistance of Salmonella serotypes recovered throughout the beef production chain and from patients with salmonellosis. PeerJ 6:e5482. https://doi.org/10.7717/peerj.5482
Richards AK, Hopkins BA, Shariat NW (2020) Conserved CRISPR arrays in Salmonella enterica serovar Infantis can serve as qPCR targets to detect Infantis in mixed serovar populations. Lett Appl Microbiol 71:138–145. https://doi.org/10.1111/lam.13296
Rowlands RE, Ristori CA, Ikuno AA, Barbosa ML, Jakabi M, Franco BD (2014) Prevalence of drug resistance and virulence features in Salmonella spp. isolated from foods associated or not with salmonellosis in Brazil. Rev Inst Med Trop São Paulo 56:461–467. https://doi.org/10.1590/s0036-46652014000600001
Rytkönen A, Poh J, Garmendia J, Boyle C, Thompson A, Liu M, Freemont P, Hinton JC, Holden DW (2007) SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci USA 104(9):3502–3507. https://doi.org/10.1073/pnas.0610095104
Shahada F, Sugiyama H, Chuma T, Sueyoshi M, Okamoto K (2010) Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella Infantis isolated from broilers. Vet Microbiol 140:136–141. https://doi.org/10.1016/j.vetmic.2009.07.007
Shariat NW, Feye KM, Richards AK, Booher B, Flores Z, Rubinelli PM, Olson EG, Ricke SC (2020) Incidence of Salmonella serovars isolated from commercial animal feed mills in the United States and serovar identification using CRISPR analysis. J Appl Microbiol 130:2141–2146. https://doi.org/10.1111/jam.14933
Shariat N, Sandt CH, DiMarzio MJ, Barrangou R, Dudley EG (2013) CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiol 13:254. https://doi.org/10.1186/1471-2180-13-254
Sodagari HR, Mohammed AB, Wang P, O’Dea M, Abraham S, Robertson I, Habib I (2019) Non-typhoidal Salmonella contamination in egg shells and contents from retail in Western Australia: serovar diversity, multilocus sequence types, and phenotypic and genomic characterizations of antimicrobial resistance. Int J Food Microbiol 308:108305. https://doi.org/10.1016/j.ijfoodmicro.2019
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266. https://doi.org/10.1146/annurev-biochem-072911-172315
Touchon M, Rocha EP (2010) The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS ONE 5:e11126. https://doi.org/10.1371/journal.pone.0011126
Vilela FP, Dos Prazeres RD, Costa RG, Casas MRT, Falcão JP, Campioni F (2020) High similarity and high frequency of virulence genes among Salmonella Dublin strains isolated over a 33-year period in Brazil. Braz J Microbiol 51:497–509. https://doi.org/10.1007/s42770-019-00156-5
Vilela FP, Pribul BR, Rodrigues DDP, Balkey M, Allard M, Falcão JP (2021) Draft genome sequences of 80 Salmonella enterica serovar Infantis strains isolated from food, environmental, human, and veterinary sources in Brazil. Microbiol Resour Announc 10:e0031321. https://doi.org/10.1128/MRA.00313-21
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP (2022) Genomic characterization and antimicrobial resistance profiles of Salmonella enterica serovar Infantis isolated from food, humans and veterinary-related sources in Brazil. J Appl Microbiol 132:3327–3342. https://doi.org/10.1111/jam.15430
Voss-Rech D, Vaz CS, Alves L, Coldebella A, Leão JA, Rodrigues DP, Back A (2015) A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult Sci 94:433–441. https://doi.org/10.3382/ps/peu081
Wajid M, Saleemi MK, Sarwar Y, Ali A (2019) Detection and characterization of multidrug-resistant Salmonella enterica serovar Infantis as an emerging threat in poultry farms of Faisalabad, Pakistan. J Appl Microbiol 127:248–261
World Health Organization (WHO) (2022) Food Safety – Fact Sheet. Available at: https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed 20 May 2023
Xie X, Hu Y, Xu Y, Yin K, Li Y, Chen Y, Xia J, Xu L, Liu Z, Geng S, Li Q, Jiao X, Chen X, Pan Z (2017) Genetic analysis of Salmonella enterica serovar Gallinarum biovar Pullorum based on characterization and evolution of CRISPR sequence. Vet Microbiol 203:81–87. https://doi.org/10.1016/j.vetmic.2017.02.010
Yokoyama E, Murakami K, Shiwa Y, Ishige T, Ando N, Kikuchi T, Murakami S (2014) Phylogenetic and population genetic analysis of Salmonella enterica subsp. enterica serovar Infantis strains isolated in Japan using whole genome sequence data. Infect Genet Evol 27:62–68. https://doi.org/10.1016/j.meegid.2014.06.012
Yokoyama E, Ando N, Ohta T, Kanada A, Shiwa Y, Ishige T, Murakami K, Kikuchi T, Murakami S (2015) A novel subpopulation of Salmonella enterica serovar Infantis strains isolated from broiler chicken organs other than the gastrointestinal tract. Vet Microbiol 175:312–318. https://doi.org/10.1016/j.vetmic.2014.11.024
Acknowledgements
We would like to thank Editage (www.editage.com.br) for English language editing.
Funding
This study was supported by research grants from the FDA/Center for Food Safety and Applied Nutrition (CFSAN) under the supervision of MWA and from the São Paulo Research Foundation (FAPESP; Proc. 2016/24716-3 and 2022/07013-0) under the supervision of JPF. FPV was supported by a Master’s student (2019/06947-6) and a PhD student scholarship from FAPESP (2021/07365–0). JPF was supported by a Productive fellowship (Proc. 304399/2018-3 and 304803/2021-9) of the National Council for Scientific and Technological Development. This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil—Finance Code 001.
Author information
Authors and Affiliations
Contributions
FPV: Conceptualization, formal analysis, investigation, methodology, writing of the original draft. MWA: Data curation, resources, supervision, writing of the review, editing. JPF: Conceptualization, project administration, resources, supervision, writing of the review, editing.
Corresponding author
Additional information
Communicated by Martine Collart.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vilela, F.P., Rodrigues, D.d., Allard, M.W. et al. CRISPR and CRISPR–MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries. Mol Genet Genomics 299, 61 (2024). https://doi.org/10.1007/s00438-024-02147-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00438-024-02147-0