Skip to main content
Log in

Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Heterosis has been extensively applied for many traits during maize breeding, but there has been relatively little attention paid to the heterosis for kernel size. In this study, we evaluated a population of 301 recombinant inbred lines derived from a cross between 08-641 and YE478, as well as 298 hybrids from an immortalized F2 (IF2) population to detect quantitative trait loci (QTLs) for six kernel-related traits and the mid-parent heterosis (MPH) for these traits. A total of 100 QTLs, six pairs of loci with epistatic interactions, and five significant QTL × environment interactions were identified in both mapping populations. Seven QTLs accounted for over 10% of the phenotypic variation. Only four QTLs affected both the trait means and the MPH, suggesting the genetic mechanisms for kernel-related traits and the heterosis for kernel size are not completely independent. Moreover, more than half of the QTLs for each trait in the IF2 population exhibited dominance, implying that dominance is more important than other genetic effects for the heterosis for kernel-related traits. Additionally, 20 QTL clusters comprising 46 QTLs were detected across ten chromosomes. Specific chromosomal regions (bins 2.03, 6.04–6.05, and 9.01–9.02) exhibited pleiotropy and congruency across diverse heterotic patterns in previous studies. These results may provide additional insights into the genetic basis for the MPH for kernel-related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All supporting data and materials are available from the corresponding authors upon request.

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    CAS  Google Scholar 

  • Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y, Cheng H, Li X, Zhou B, Wu S, Chen W, Wu J, Ding J (2016a) The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One 11:e0153428

    PubMed  PubMed Central  Google Scholar 

  • Chen L, Li YX, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, Song Y, Li Y, Wang T (2016b) Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol 16:81

    PubMed  PubMed Central  Google Scholar 

  • Chen L, An Y, Li Y, Li C, Shi Y, Song Y, Zhang D, Wang T, Li Y (2017) Candidate loci for yield-related traits in maize revealed by a combination of meta QTL analysis and regional association mapping. Front Plant Sci 8:2190

    PubMed  PubMed Central  Google Scholar 

  • Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143:1437–1456

    PubMed  PubMed Central  CAS  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    PubMed  CAS  Google Scholar 

  • Dickinson DB, Preiss J (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol 44:1058–1062

    PubMed  PubMed Central  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) Proceedings of the international symposium on the genetics and exploitation of heterosis in crops, CIMMYT, Mexico city, 17–22 Aug 1997. ASA, CSSA, and SSSA, Madison, pp 19–29

  • East EM (1908) Inbreeding in corn. Conn Agric Exp Stn Rep 1907:419–428

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS One 4:e7433

    PubMed  PubMed Central  Google Scholar 

  • Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia AAF, Wang SC, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724

    PubMed  PubMed Central  Google Scholar 

  • Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149

    PubMed  Google Scholar 

  • Hallauer AR, Mirando FJB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University, Ames

    Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hua JP, Xing YZ, Wei WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    PubMed  CAS  Google Scholar 

  • Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lan T, He K, Chang L, Cui T, Zhao Z, Xue J, Liu J (2018) QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica 214:119

    Google Scholar 

  • Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–835

    PubMed  PubMed Central  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    PubMed  PubMed Central  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    PubMed  Google Scholar 

  • Li Y, Wang Y, Shi Y, Song Y, Wand T, Li Y (2009) Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin 42:408–418

    CAS  Google Scholar 

  • Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753

    PubMed  CAS  Google Scholar 

  • Li X, Li Y, Chen L, Wu X, Qin W, Song Y, Zhang D, Wang T, Li Y, Shi Y (2016) Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica 210:221

    CAS  Google Scholar 

  • Li H, Yang Q, Gao L, Zhang M, Ni Z, Zhang Y (2017) Identification of heterosis-associated stable QTLs for ear-weight-related traits in an elite maize hybrid zhengdan 958 by design III. Front Plant Sci 8:561

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    PubMed  CAS  Google Scholar 

  • Liu Y, Hou X, Xiao Q, Yi Q, Bian S, Hu Y, Liu H, Zhang J, Hao X, Cheng W, Li Y, Huang Y (2016) Genetic analysis in maize foundation parents with mapping population and testcross population: Ye478 carried more favorable alleles and using QTL information could improve foundation parents. Front Plant Sci 7:1417

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Huang J, Guo H, Lan L, Wang H, Xu Y, Yang X, Li W, Tong H, Xiao Y, Pan Q, Qiao F, Raihan MS, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Zhan W, Liu N, Wang H, Chen G, Li Q, Yan J (2017) The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol 175:774–785

    PubMed  PubMed Central  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107:494–502

    PubMed  CAS  Google Scholar 

  • Mathias L (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235

    Google Scholar 

  • Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schön CC (2007) The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics 177:1815–1825

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Pan D, Nelson OE (1984) A debranching enzyme deficiency in endosperms of the Sugary-7 mutants of maize. Plant Physiol 74:324–328

    PubMed  PubMed Central  CAS  Google Scholar 

  • Powers L (1944) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275–280

    Google Scholar 

  • Qin WW, Li YX, Wu X, Li X, Chen L, Shi YS, Song YCH, Zhang DF, Wang TY, Li Y (2016) Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed 36:1–9

    CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. http://www.r-project.org. Accessed 1 Mar 2019

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    PubMed  Google Scholar 

  • SAC (2009) National standards of the P. R. C. Standardization Administration of the People Republic of China, Standards Press of China, Beijing, P. R. China. https://www.chinesestandard.net/PDF/English.aspx/GB1353–2009. Accessed 1 Mar 2019

  • Samayoa LF, Malvar RA, Butrón A (2017) QTL for maize midparent heterosis in the heterotic pattern american Dent × European flint under corn borer pressure. Front Plant Sci 8:573

    PubMed  PubMed Central  Google Scholar 

  • Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960–963

    PubMed  CAS  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22 kD zein genes. Plant Cell 4:689–700

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schön CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321–332

    PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Thero Appl Genet 120:333–340

    Google Scholar 

  • Wang D, Zhu J, Li Z, Paterson A (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Google Scholar 

  • Wang H, Zhang X, Yang H, Liu X, Li H, Yuan L, Li W, Fu Z, Tang J, Kang D (2016) Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Sci Rep 6:38205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhang X, Shi X, Sun C, Jin J, Tian R, Wei X, Xie H, Guo Z, Tang J (2018) Heterotic loci identified for maize kernel traits in two chromosome segment substitution line test populations. Sci Rep 8:11101

    PubMed  PubMed Central  Google Scholar 

  • Wei X, Lu X, Zhang Z, Xu M, Mao K, Li W, Wei F, Sun P, Tang J (2016) Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica 210:181

    Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature 184:527–530

    PubMed  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1736

    PubMed  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    PubMed  Google Scholar 

  • Yang C, Zhang L, Jia A, Rong T (2016) Identification of QTL for maize grain yield and kernel-related traits. J Genet 95:239–247

    PubMed  Google Scholar 

  • Zhan J, Wang F, Xing W, Liu J, Fan Z, Tao Y (2018) Fine mapping and candidate gene prediction of a major QTL for kernel number per ear in maize. Mol Breed 38:27

    Google Scholar 

  • Zhang Z, Liu Z, Hu Y, Li W, Fu Z, Ding D, Li H, Qiao M, Tang J (2014) QTL Analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One 9:e89645

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wu X, Shi C, Wang R, Li S, Wang Z, Liu Z, Xue Y, Tang G, Tang J (2016) Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol Genet Genomics 291:437–454

    PubMed  CAS  Google Scholar 

  • Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z, Weng J (2017) Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet 130:1011–1029

    PubMed  CAS  Google Scholar 

  • Zhou Q, Dong Y, Shi Q, Zhang L, Chen H, Hu C, Li Y (2017) Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genomics 292:871

    PubMed  CAS  Google Scholar 

  • Zhu X, Shao X, Pei Y, Guo X, Li J, Song X, Zhao M (2018) Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Front Plant Sci 9:966

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all students for participating in the fieldwork. We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Funding

This study was funded by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (2016JY0065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yi, Q., Hou, X. et al. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.). Mol Genet Genomics 295, 121–133 (2020). https://doi.org/10.1007/s00438-019-01608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-019-01608-1

Keywords

Navigation