Skip to main content
Log in

Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polyploidization is considered as the major force that drives plant species evolution and biodiversity. The leaves of Chinese cabbage, an important vegetable crop valued for its nutritional quality, constitute the main edible organ. In this study, we found that autotetraploid Chinese cabbage (Brassica rapa ssp. pekinensis) generated from a doubled haploid (DH) line via isolated microspore culture exhibits a dwarf phenotype, along with thick leaves and delayed flowering. Abscisic acid (ABA) and brassinosteroid (BR) levels were significantly lower in autotetraploids compared to DHs. Comparative transcriptome analysis was performed to examine the gene regulatory network. A total of 13,225 differentially expressed genes (DEGs) were detected. Further microRNA (miRNA) analysis identified 102 DEGs that correspond to 35 differentially expressed miRNAs (DEMs). Subsequent screening of these 102 genes identified 13 key genes with 12 corresponding differentially expressed miRNAs that are related to leaf development and dwarfism. These 13 genes are involved in the regulation of various processes, including BR synthesis (dwarfing), plant growth, flowering time delay, ABA pathway-related growth and metabolism, leaf morphology and development, and cell extension. Two dwarfing-related genes (BraA01000252 and BraA05004386) regulated by two miRNAs (novel_15 and novel_54) were determined to be downregulated, indicating their possible role in leaf thickness and dwarfism in autotetraploid plants. We also propose two possible miRNA-dependent regulatory pathways that contribute to trait formation in autotetraploid Chinese cabbage. These results provide a theoretical basis for further work involving Chinese cabbage varieties by inducing polyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn C, Ahn HK, Pai HS (2015) Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot 66:827–840

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braynen J, Yang Y, Wei F, Cao GQ, Shi GY, Tian BM, Zhang XW, Jia H, Wei XC, Wei ZZ (2017) Transcriptome analysis of floral bud deciphered an irregular course of meiosis in polyploidy Brassica rapa. Front Plant Sci 8:768

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen ML, Fu XM, Liu JQ, Ye TT, Hou SY, Huang YQ, Yuan BF, Wu Y, Feng YQ (2012) Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q-TOF-MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 905:67–74

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wang C, Tian Y, Chu Q, Hu C (2015) Anatomical characteristics of young stems and mature leaves of dwarf pear. Sci Hortic 186:172–179

    Article  Google Scholar 

  • Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li SL, Hao XJ, Zhang ZG (2017) Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 7:12504

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai F, Wang Z, Luo G, Tang C (2015) Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.). Int J Mol Sci 16:22938–22956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Norman J, Sieburth LE (2003) VARICOSE, a WD-domain protein, is required for leaf blade development. Development 130:6577–6588

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Mao LJ, Wang ST, Yuan BF, Feng YQ (2013) Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by high-performance liquid chromatography-tandem mass spectrometry. Phytochem Anal 24:386–394

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Dudits D, Török K, Cseri A, Paul K, Nagy AV, Nagy B, Sass L, Ferenc G, Vankova R, Dobrev P, Vass I, Ayaydin F (2016) Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiol 170:1504–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2013) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2011) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo HB, Mendrikahy JN, Xie L, Deng JF, Lu ZJ, Wu JW, Li X, Shahid MQ, Liu XD (2017) Transcriptome analysis of Neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci Rep 7:40139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JH, Shahid MQ, Chen ZX, Chen XA, Liu XD, Lu YG (2011) Abnormal PMC microtubule distribution pattern and chromosome behavior resulted in low pollen fertility of an intersubspecific autotetraploid rice hybrid. Plant Syst Evol 291:257–265

    Article  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Niu HH (2017) A mutant in the CsDET2 gene leads to a systemic brassinosteroid deficiency and super compact phenotype in cucumber (Cucumis sativus L). Theor Appl Genet 76:102–103

    Google Scholar 

  • Hu R, Zhu Y, Shen G, Zhang H (2014) TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. Plant Physiol 164:721–734

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Liu Z, Li D, Yao R, Meng Q, Feng H (2014) Screening of Chinese cabbage mutants produced by 60Co γ-ray mutagenesis of isolated microspore cultures. Plant Breeding 133:480–488

    Article  CAS  Google Scholar 

  • Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M (2012) A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 24:4483–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson R (1982) Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. Am J Bot 69:1512–1523

    Article  Google Scholar 

  • Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V (2014) A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. Plant J 80:242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang HY, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim TW, Kim SK (2005) Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry 66:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CL, Wang M, Ma XY, Zhang W (2014) NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. Mol Plant 7:1508–1521

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shahid MQ, Wu JW, Wang L, Liu XD, Lu YG (2016) Comparative small RNA analysis of pollen development in autotetraploid and diploid rice. Int J Mol Sci 17:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Shahid MQ, Xia J, Lu ZJ, Fang N, Wang L, Wu JW, Chen ZX, Liu XD (2017) Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genom 18:129

    Article  Google Scholar 

  • Ma Y, Xue H, Zhang L, Zhang F, Ou C, Wang F, Zhang ZH (2016) Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus × domestica). Sci Rep 6:26719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdi M, Karimzadeh G, Malboobi MA, Omidbaigi R, Mirzaghaderi G (2010) Induction of tetraploidy to feverfew (Tanacetum parthenium Schulz-Bip.): morphological, physiological, cytological, and phytochemical changes. Hortscience 45:16–21

    Google Scholar 

  • Mu HZ, Liu ZJ, Lin L, Li HY, Jiang J, Liu GF (2012) Transcriptomic analysis of phenotypic changes in Birch (Betula platyphylla) Autotetraploids. Int J Mol Sci 13:13012–13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Zhang J, Zhang J, Wang Z, Ran A, Guo H, Wang D, Zhang JL (2017) Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L. Mol Genet Genomics 292:37–52

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rojas-González JA, Soto-Súarez M, García-Díaz Á, Romero-Puertas MC, Sandalio LM, Mérida Á et al (2015) Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J Exp Bot 66:2673–2689

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahid MQ, Li YJ, Saleem MF, Naeem M, Wei CM, Liu XD (2013) Yield and yield components in autotetraploid and diploid rice genotypes (indica and japonica) sown in early and late seasons. Aust J Crop Sci 7:632–641

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Song JB, Huang SQ, Dalmay T, Yang ZM (2012) Regulation of leaf morphology by MicroRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol 53:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Storey JD (2003) The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat 31:2013–2035

    Article  Google Scholar 

  • Stupar RM, Bhaskar PB, Yandel B, Rensink W, Hart A, Ouyang S, Veilleuc RE, Busse JS, Erhardt RJ, Buell CR, Jiang JM (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama S (2005) Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Ann Bot 96:931–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Tal M (1977) Physiology of polyploid plants: DNA, RNA, protein, and abscisic acid in autotetraploid and diploid tomato under low and high salinity. Int J Plant Sci 2:119–122

    Google Scholar 

  • Tang ZQ, Chen DL, Song ZJ, He YC, Cai DT (2010) In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tissue Organ Cult 102:213–220

    Article  Google Scholar 

  • Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM (2010) Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids. Plant Mol Biol 74:167–181

    Article  CAS  PubMed  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133:1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  PubMed  Google Scholar 

  • Vergara F, Rymen B, Kuwahara A, Sawada Y, Sato M, Hirai MY (2017) Autopolyploidization, geographic origin, and metabolome evolution in Arabidopsis thaliana. Am J Bot 104:905–914

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang N, Xing Y, Lou Q, Feng P, Liu S, Zhu M, Yin W, Fang S, Lin Y, Zhang T, Sang X, He G (2017) Dwarf and short grain 1 encoding a putative U-box protein regulates cell division and elongation in rice. J Plant Physiol 209:84–94

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plantsmall RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JW, Shahid MQ, Chen L, Chen ZX, Wang L, Liu XD, Lu YG (2015) Polyploidy enhances F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen sterility in autotetraploid rice. Plant Physiol 169:2700–2717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JW, Chen L, Shahid MQ, Chen MY, Dong QL, Li JR, Xu XS, Liu XD (2017) Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice. Rice 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang F, Li J, Chen JP, Zhang HM (2016) Integrative Analysis of the microRNAome and transcriptome illuminates the response of susceptible rice plants to rice stripe virus. PloS One 11:e0146946

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Haberer G, Matthes M, Rattei T, Mayer FX, Gierl A et al (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Natl Acad Sci 107:17809–17814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Kang L, Liao S, Pan Q, Ge X, Li Z (2015) Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort.). PLoS One 10:e0116392

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 31672144) supported this study.

Author information

Authors and Affiliations

Authors

Contributions

HF and ZYL conceived and designed the study; YHW and XYT performed the experiments; YHW wrote the paper; YHW and SNH reviewed and edited the manuscript; All authors read and approved the manuscript.

Corresponding author

Correspondence to Hui Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Database linking

The transcriptome and microRNAome sequencing data were deposited in the NCBI Gene Expression Omnibus (GEO) Database under accession numbers GSE111607 and GSE111610, respectively.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, S., Liu, Z. et al. Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics 293, 1535–1546 (2018). https://doi.org/10.1007/s00438-018-1480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1480-z

Keywords

Navigation