Skip to main content
Log in

The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factor

GH3:

Gretchen Hagen3

AUX/IAA:

Auxin/indole-3-acetic acid protein

AZ A:

Abscission zone A

RT-PCR:

Semi-quantitative reverse transcription polymerase chain reaction

qPCR:

Quantitative real-time PCR

DBD:

DNA-binding domain

References

  • Abebie B, Lers A, Philosoph-Hadas S, Goren R, Riov J, Meir S (2008) Differential effects of NAA and 2,4-D in reducing floret abscission in Cestrum (Cestrum elegans) cut flowers are associated with their differential activation of AUX/IAA homologous genes. Ann Bot 101:249–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Ceruti L, Corpet F, Croning MDR, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucl Acids Res 29:37–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M et al (2012) Genome-wide identification, functional analysis and expression profiling of the AUX/IAA gene family in tomato. Plant Cell Physiol 53:659–672

    Article  CAS  PubMed  Google Scholar 

  • Ben-Cheikh W, Pérez-Botella J, Tadeo FR, Talon M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blanusa T, Else MA, Atkinson CJ, Davies WJ (2005) The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regul 45:189–198

    Article  CAS  Google Scholar 

  • Cakir B, Kilickaya O, Olcay AC (2013) Genome-wide analysis of AUX/IAA genes in Vitis vinifera: cloning and expression profiling of a grape AUX/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol Plant 35:365–377

    CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescenece and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L) under abiotic stresses. J Integr Plant Biol. doi:10.1111/jipb.12327

    Google Scholar 

  • Gan D, Zhuang D, Ding F, Yu Z, Zhao Y (2013) Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus). J Genet 92:513–521

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Xu T, Gao S, Qi M, Wang Y, Liu X, Li T (2014) Temporal and spatial distribution of auxin response factor genes during tomato flower abscission. J Plant Growth Regul 33:317–327

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) The auxin response factor transcription factor family in soybean: genome-wide identification and expression analysies during development and water stress. DNA Res 20:511–524

    Article  PubMed Central  PubMed  Google Scholar 

  • Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M (2006) Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees 20:348–355

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  PubMed  Google Scholar 

  • Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ, Li JG (2012) Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in Lichi. Int J Mol Sci 13:16084–16103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genom 285:245–260

    Article  CAS  Google Scholar 

  • Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012) Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genom 287:221–235

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X v. 2.0. Bioinfor-matics 23:2947–2948

    Article  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucl Acids Res 32:142–144

    Article  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jiang H, Chen W, Qian Y, Ma Q, Cheng B, Zhu S (2011) Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). Plant Growth Regul 63:225–234

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mafra V, Kubo KS, Vlves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference gene for accurate transcript normalization in Citrus genotypes under different experimental conditions. PLoS One 7:e31263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KSV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010) Microarry analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154:1929–1956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukesh J, Navneet K, Rohini G, Jitendra KT, Akhilesh KT, Jitendra PK (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  Google Scholar 

  • Nicholas KB, Nicholas HBJ, Deerfield DWI (1997) Genedoc: analysis and visualization of genetic variation. Embnew News 4:14

    Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Echer JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen C, Yue R, Yang Y, Zhang L, Sun T, Xu L, Tie S, Wang H (2014) Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago trucatula during the early phase of Sinorhizobium meliloti infection. PLoS One 9:e107495

    Article  PubMed Central  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  CAS  PubMed  Google Scholar 

  • Ullah R, Sajid M, Ahmad H, Luqman M, Razaq M, Nabi G, Fahad S, Rab A (2014) Association of gibberellic acid (GA3) with fruit set and fruit drop of sweet orange. J Bio Agri Health 4:54–59

    Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan S, Li W, Zhu Y, Liu Z, Huang W, Zhan J (2014) Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Rep 33:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Bian Y, Lv Y, Xie Q (2010) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). Mol Biol Rep 37:3991–4001

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu D, Li A, Sun X, Zhang R, Wu L, Liang Y, Mao L (2013) Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem acivity genes. PLoS One 8:e55238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G (2012) Genome-wide analysis of Aux/IAA gene family family in Solanaceae species using tomato as a model. Mol Genet Genom 287:295–311

    Article  CAS  Google Scholar 

  • Wu J, Liu S, Guan X, Chen L, He Y, Wang J, Lu G (2014) Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber. BMC Res Notes 7:218

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie RJ, Deng L, Jing L, He SL, Ma YT, Yi SL, Zheng YQ, Zheng L (2013) Recent advances in molecular events of fruit abscission. Biol Plantarum 57:201–209

    Article  CAS  Google Scholar 

  • Yang C, Xu M, Xuan L, Jiang X, Huang M (2014a) Identification and expression analysis of twenty ARF genes in Populus. Gene 544:134–144

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yue R, Sun T, Zhang L, Chen W, Zeng H, Wang H, Shen C (2014b) Genme-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6311-5

    Google Scholar 

  • Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T (2013) Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genom 14:297–310

    Article  CAS  Google Scholar 

  • Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan RC (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. -. BMC Plant Biol 11:138–157

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuo X, Xu T, Qi M, Lv S, Li J, Gao S, Li T (2012) Expression patterns of auxin-responsive genes during tomato flower pedicel abscission and potential effects of calcium. Aust J Bot 60:68–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Li Jing and Chris for critical reading of the manuscript. This work was funded by NSFC (31301743), the National Science-technology Support Plan Projects (2013BAD02B00), the Planning Subject of ‘the twelfth five-year-plan’ in National Science and Technology for the Rural Development in China (2014BAD16B00), Chongqing Application and Development Projects (cstc2013yykfB80001), and Chongqing “121” demonstrative project of science and technology support (cstc2014fazktjcsf80031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangjin Xie.

Additional information

Communicated by S. Hohmann.

R. Xie and S. Pang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Pang, S., Ma, Y. et al. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Mol Genet Genomics 290, 2089–2105 (2015). https://doi.org/10.1007/s00438-015-1063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1063-1

Keywords

Navigation