Skip to main content

Advertisement

Log in

Diversification and distinctive structural features of S-RNase alleles in the genus Solanum

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The multigenic and multiallelic S-locus in plants is responsible for the gametophytic self-incompatibility system, which is important to prevent the detrimental effects of self-fertilization and inbreeding depression. Several studies have discussed the importance of punctual mutations, recombination, and natural selection in the generation of allelic diversity in the S-locus. However, there has been no wide-ranging study correlating the molecular evolution and structural aspects of the corresponding proteins in Solanum. Therefore, we evaluated the molecular evolution of one gene in this locus and generated a statistically well-supported phylogenetic tree, as well as evidence of positive selection, helping us to understand the diversification of S alleles in Solanum. The three-dimensional structures of some of the proteins corresponding to the major clusters of the phylogenetic tree were constructed and subsequently submitted to molecular dynamics to stabilize the folding and obtain the native structure. The positively selected amino acid residues were predominantly located in the hyper variable regions and on the surface of the protein, which appears to be fundamental for allele specificity. One of the positively selected residues was identified adjacent to a conserved strand that is crucial for enzymatic catalysis. Additionally, we have shown significant differences in the electrostatic potential among the predicted molecular surfaces in S-RNases. The structural results indicate that local changes in the three-dimensional structure are present in some regions of the molecule, although the general structure seems to be conserved. No previous study has described such structural variations in S-RNases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J MolBiol 215:403–410

    Article  CAS  Google Scholar 

  • Anderson MA, Cornish EC, Mau S-L, Williams EG et al (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotianaalata. Nature 321:38–44

    Article  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, and Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bielawski JP, Yang Z (2005) Maximum likelihood methods for detecting adaptive protein evolution. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer Verlag Series in Statistics for Biology and Health, New York (NY), pp 103–124

    Chapter  Google Scholar 

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:e64

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D66:12–21

    Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  Google Scholar 

  • Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32:W615–W619

  • de Nettancourt D (1977) Incompatibility in Angiosperms. Springer Verlag, Berlin

    Book  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Flohil JA, Vriend G, Berendsen HJC (2002) Completion and refinement of 3-D homology models with restricted molecular dynamics: Application to targets 47, 58, and 111 in the CASP modeling competition and posterior analysis. Proteins 48:593–604

    Article  CAS  PubMed  Google Scholar 

  • GolzJF SuV, Clarke AE, Newbegin E (1999) A molecular description of mutations affecting the pollen component of the Nicotianaalata S-locus. Genetics 152:1123–1135

    Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Ida K, Norioka S, Yamamoto M, Kumasaka T, Yamashita E, Newbigin ED, Clarke AE, Sakiyama F, Sato M (2001) The 1.55 Å resolution structure of Nicotianaalata SF11-RNase associated with gametophytic self-incompatibility. J Mol Biol 314:103–112

    Article  CAS  PubMed  Google Scholar 

  • Igic B, Smith WA, Robertson K, Schaal BA, Kohn JR (2007) The population genetics of the self-incompatibility polymorphism in wild tomatoes: I. S-RNase diversity in Solanum chilense (Dun.) Reiche (Solanaceae). Heredity 99:553–561

    Article  CAS  PubMed  Google Scholar 

  • Ioerger TR, Gohlke JR, Xu B, Kao T-H (1991) Primary structural features of the self-incompatibility protein in Solanaceae. Sex Plant Reprod 4:81–87

    Article  Google Scholar 

  • Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Acc 125:543–550

    Article  Google Scholar 

  • Kao T-H, McCubbin AG (1996) How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci USA 93:12059–12065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:387–392

    Article  Google Scholar 

  • Klein J, Sato A, Nagl S, O’hUigín C (1998) Molecular trans-species polymorphism. Ann Rev Ecol Syst 29:1–21

    Article  Google Scholar 

  • Liu B, Morse D, Cappadocia M (2008) Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense. J Exp Bot 59:545–552

    Article  CAS  PubMed  Google Scholar 

  • Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends BiochemSci35:253-259

  • MacIntosh GC (2011) RNase T2 family: enzymatic properties, functional diversity, and evolution of ancient ribonucleases. Nicholson AW(ed) Ribonucleases. Springer Verlag Series in Nucleic Acids and Molecular Biology, Berlin, pp 89–114

    Chapter  Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Ann Rev Bioph Biom 29:291–325

    Article  CAS  Google Scholar 

  • Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • May G, Shaw F, Badrane H, Vekemans X (1999) The signature of balancing selection: Fungal mating compatibility gene evolution. Proc Natl Acad Sci USA 96:9172–9177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotianaalata are ribonucleases. Nature 342:955–957

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, T-h Kao (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Bi 16:333–364

    Article  CAS  Google Scholar 

  • Miller JS, Kostyum JL (2011) Functional gametophytic self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae). Heredity 107:30–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JS, Levin RA, Feliciano MM (2008) A tale of two continents: Baker’s rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 62:1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Miller JS, Kamath A, Damashek J, Levin RA (2011) Out of America to Africa or Asia: inference of dispersal histories using nuclear and plastid DNA and the S-RNase self-incompatibility locus. MolBiolEvol 28:793–801

    CAS  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nunes MDS, Santos RAM, Ferreira SM, Vieira J, Vieira CP (2006) Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol 172:577–587

    Article  CAS  PubMed  Google Scholar 

  • Oxley D, Munro SLA, Craik DJ, Bacic A (1996) Structure of N-glycans on the S3- and S6-stylar self-incompatibility ribonucleases of Nicotianaalata. Glycobiology 6:611–618

    Article  CAS  PubMed  Google Scholar 

  • Paape T, Kohn JR (2011) Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae). BMC EvolBiol 11:243

    Article  CAS  Google Scholar 

  • Paape T, Igic B, Smith SD, Olmstead R, Bohs L, Kohn JR (2008) A 15-Myr-old genetic bottleneck. Mol Biol Evol 25:655–663

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Richman A (2000) Evolution of balanced genetic polymorphism. Mol Ecol 9:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Royo J, Kunz C, Kowyama Y, Anderson M, Clarke AE, Newbigin E (1994) Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci USA 91:6511–6514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Särkinen T, Bohs L, Olmstead R, Knapp SD (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1,000-tip tree. BMC Evol Biol 13:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Sassa H, Hirano H, Nishino T, Koba T (1997) Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J12:223–227

    Article  Google Scholar 

  • Savage AE, Miller JS (2006) Gametophytic self-incompatibility in Lyciumparishii (Solanaceae): allelic diversity, genealogical structure, and patterns of molecular evolution. Heredity 96:434–444

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomumJuz. etBuk. and its putative wild Ancestral species using high-resolution markers. Genet Res Crop Ev 53:53–63

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai D-S, Lee H-S, Post LC, Kreiling KM, Kao T-H (1992) Sequence of an S-protein of Lycopersiconperuvianum and comparison with other solanaceous S-proteins. Sex Plant Reprod 5:256–263

    Article  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of Almond: identification of a pollen expressed F-box gene with haplotype-specific polymorphism. Plant Cell 115:771–781

    Article  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • vanGunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) The GROMOS96 manual and user guide. VdfHochschulverlag AG, Zürich

    Google Scholar 

  • Vekemans X, Slatkin M (1994) Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics 137:1157–1165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vieira J, Morales-Hojas R, Santos RAM, Vieira CP (2007) Different positively selected sites at the gametophytic self-incompatibility pistil S-RNase gene in the Solanaceae and Rosaceae (Prunus, Pyrus, and Malus). J Mol Evol 65:175–185

    Article  CAS  PubMed  Google Scholar 

  • Wong WS, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodward JR, Bacic A, Jahnen W, Clarke AE (1989) N-linked glycan chains on S-allele-associated glycoproteins from Nicotiana alata. Plant Cell 1:511–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodward JR, Craik D, Dell A, Khoo K-H, Munro SLA, Clarke AE, Bacic A (1992) Structural analysis of the N-linked glycan chains from a stylar glycoprotein associated with expression of self-incompatibility in Nicotianaalata. Glycobiology 2:241–250

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yang Z (2013) pamlX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zisovich AH, Stern RA, Sapir G, Shafir S, Goldway M (2004) The RHV region of S-RNase in the European pear (Pyruscommunis) is not required for the determination of specific pollen rejection. Sex Plant Reprod 17:151–156

    Article  CAS  Google Scholar 

  • Zurek DM, Mou B, Beecher B, McClure BA (1997) Exchanging sequence domains between S-RNases from Nicotianaalata disrupts pollen recognition. Plant J11:797–808

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (PPGBM-UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreta Brandão de Freitas.

Additional information

Communicated by C. Gebhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisolara-Corrêa, L., Thompson, C.E., Fernandes, C.L. et al. Diversification and distinctive structural features of S-RNase alleles in the genus Solanum . Mol Genet Genomics 290, 987–1002 (2015). https://doi.org/10.1007/s00438-014-0969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0969-3

Keywords

Navigation