Skip to main content
Log in

Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Aspergillus nidulans senses red and blue-light and employs a phytochrome and a Neurospora crassa White Collar (WC) homologous system for light perception and transmits this information into developmental decisions. Under light conditions it undergoes asexual development and in the dark it develops sexually. The phytochrome FphA consists of a light sensory domain and a signal output domain, consisting of a histidine kinase and a response regulator domain. Previously it was shown that the phytochrome FphA directly interacts with the WC-2 homologue, LreB and another regulator, VeA. In this paper we mapped the interaction of FphA with LreB to the histidine kinase and the response regulator domain at the C-terminus in vivo using the bimolecular fluorescence complementation assay and in vitro by co-immunoprecipitation. In comparison, VeA interacted with FphA only at the histidine kinase domain. We present evidence that VeA occurs as a phosphorylated and a non-phosphorylated form in the cell. The phosphorylation status of the protein was independent of the light receptors FphA, LreB and the WC-1 homologue LreA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  PubMed  CAS  Google Scholar 

  • Bayram Ö, Krappmann S, Seiler S, Vogt N, Braus GH (2007) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    Article  PubMed  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyse-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    Article  PubMed  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  • Bhoo S-H, Davis SJ, Walker J, Karniol B, Vierstra RD (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414:776–779

    Article  PubMed  CAS  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Busch S, Braus GH (2007) How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876

    Article  PubMed  CAS  Google Scholar 

  • Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  PubMed  CAS  Google Scholar 

  • Fischer R (2008) Sex and poison in the dark. Science 320:1430–1431

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Kües U (2006) Asexual sporulation in mycelial fungi. In: Kües U, Fischer R (eds) The Mycota, growth differentiation and sexuality, vol I. Heidelberg, Springer, pp 263–292

  • Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4:2140–2152

    Article  Google Scholar 

  • Hiltbrunner A, Tscheuschler A, Viczián A, Kunkel T, Kircher S, Schäfer E (2006) FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  Google Scholar 

  • Kato N, Brooks W, Calvo AM (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186

    Article  PubMed  CAS  Google Scholar 

  • Kim H-S, Han K-Y, Kim K-J, Han D-M, Jahng K-Y, Chae K-S (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    Article  PubMed  CAS  Google Scholar 

  • Lamparter T, Mittmann F, Gärtner W, Borner T, Hartmann E, Hughes J (1997) Characterization of recombinant phytochrome from the Cyanobacterium synechocystis. Proc Natl Acad Sci USA 94:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Macino G (1997) White Collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    Article  PubMed  CAS  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail MA (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571

    Article  PubMed  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  PubMed  CAS  Google Scholar 

  • Rockwell NC, Lagarias JC (2006) The structure of phytochrome: a picture is worth a thousand spectra. Plant Cell 18:4–14

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (1999) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255

    Article  PubMed  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Bauerle I et al (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294:1108–1111

    Google Scholar 

  • van der Horst MA, Key J, Hellingwerf KJ (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. T Microbiol 15:554–562

    Article  Google Scholar 

  • Veith D, Scherr N, Efimov VP, Fischer R (2005) Role of the spindle-pole body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J Cell Sci 118:3705–3716

    Article  PubMed  CAS  Google Scholar 

  • Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin coding genes. Gene 79:119–130

    Article  PubMed  CAS  Google Scholar 

  • Yager LN, Lee HO, Nagle DL, Zimmermann JE (1998) Analysis of fluG mutations that affect light-dependent conidiation in Aspergillus nidulans. Genetics 149:1777–1786

    PubMed  CAS  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max-Planck-Institute for terrestrial Microbiology (Marburg), the special program “Lebensmittel und Gesundheit” from the Landesstiftung Baden-Württemberg and the Center for Functional Nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Fischer.

Additional information

Communicated by J. Perez-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purschwitz, J., Müller, S. & Fischer, R. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Genet Genomics 281, 35–42 (2009). https://doi.org/10.1007/s00438-008-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0390-x

Keywords