Skip to main content
Log in

Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad–spacer–dyad palindromic sequence, 5′-TGTACAAATGTACA-3′, located at nucleotides −41 to −28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at −133 to −116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides −19 to −5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brent R, Ptashne M (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78:4204–4208

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Movahedzadeh F, Davis EO (2001) Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis: apparent lack of correlation with LexA binding. J Bacteriol 183:4459–4467

    Article  PubMed  CAS  Google Scholar 

  • Calero S, Garriga X, Barbe J (1991) One-step cloning system for isolation of bacterial lexA-like genes. J Bacteriol 173:7345–7350

    PubMed  CAS  Google Scholar 

  • Campoy S, Mazon G, Fernandez de Henestrosa AR, Llagostera M, Monteiro PB, Barbe J (2002) A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. Microbiology 148:3583–3597

    PubMed  CAS  Google Scholar 

  • del Rey A, Diestra J, Fernandez de Henestrosa AR, Barbe J (1999) Determination of the Paracoccus denitrificans SOS box. Microbiology 145(Pt 3):577–584

    Article  PubMed  CAS  Google Scholar 

  • Erill I, Escribano M, Campoy S, Barbe J (2003) In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics 19:2225–2236

    Article  PubMed  CAS  Google Scholar 

  • Fernandez de Henestrosa AR, Rivera E, Tapias A, Barbe J (1998) Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  PubMed  CAS  Google Scholar 

  • Fernandez de Henestrosa AR, Cune J, Mazon G, Dubbels BL, Bazylinski DA, Barbe J (2003) Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J Bacteriol 185:447144–447182

    Article  CAS  Google Scholar 

  • Garriga X, Calero S, Barbe J (1992) Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. Mol Gen Genet 236:125–134

    PubMed  CAS  Google Scholar 

  • Humayun MZ (1998) SOS and mayday: multiple inducible mutagenic pathways in Escherichia coli. Mol Microbiol 30:905–910

    Article  PubMed  CAS  Google Scholar 

  • Jara M, Nunez C, Campoy S, Fernandez de Henestrosa AR, Lovley DR, Barbe J (2003) Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. J Bacteriol 185:2493–2502

    Article  PubMed  CAS  Google Scholar 

  • Little JW (1993) LexA cleavage and other self-processing reactions. J Bacteriol 175:4943–4950

    PubMed  CAS  Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Mount DW, Yanisch-Perron CR (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci USA 78:4199–4203

    Article  PubMed  CAS  Google Scholar 

  • Mazon G, Lucena JM, Campoy S, Fernandez de Henestrosa AR, Candau P, Barbe J (2004) LexA-binding sequences in Gram-positive and cyanobacteria are closely related. Mol Gen Genomics 271:40–49

    Article  CAS  Google Scholar 

  • Tapias A, Barbe J (1999) Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti. Mol Gen Genet 262:121–130

    Article  PubMed  CAS  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Weinel C, Nelson KE, Tummler B (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4:809–818

    Article  PubMed  CAS  Google Scholar 

  • Weng SF, Shieh MY, Lai FY, Shao YY, Lin JW, Tseng YH (1996) Construction of a broad-host-range promoter-probing vector and cloning of promoter fragments of Xanthomonas campestris. Biochem Biophys Res Commun 228:386–390

    Article  PubMed  CAS  Google Scholar 

  • Wertman KF, Mount DW (1985) Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J Bacteriol 163:376–384

    PubMed  CAS  Google Scholar 

  • Winterling KW, Levine AS, Yasbin RE, Woodgate R (1997) Characterization of DinR, the Bacillus subtilis SOS repressor. J Bacteriol 179:1698–1703

    PubMed  CAS  Google Scholar 

  • Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R (1998) The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211

    PubMed  CAS  Google Scholar 

  • Yang MK, Wu PI, Yang YC (2000) Identification of a lexA gene in, and construction of a lexA mutant of, Xanthomonas campestris pv. citri. Curr Microbiol 40:233–238

    Article  PubMed  CAS  Google Scholar 

  • Yang YC, Yang MK, Kuo TT, Tu J (2001) Structural and functional characterization of the lexA gene of Xanthomonas campestris pathovar citri. Mol Genet Genomics 265:316–326

    Article  PubMed  CAS  Google Scholar 

  • Yang MK, Yang YC, Hsu CH (2002) Characterization of Xanthomonas axonopodis pv. citri LexA: recognition of the LexA binding site. Mol Genet Genomics 268:477–487

    Article  PubMed  CAS  Google Scholar 

  • Yang MK, Su SR, Sung VL (2005) Identification and characterization of a second lexA gene of Xanthomonas axonopodis pathovar citri. Appl Environ Microbiol 71:3589–3598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chao-Hung Lee for valuable discussions and critical editing of the manuscript. This study was supported by a grant (NSC95-2311-B-030-001) from the National Science Council, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Kwei Yang.

Additional information

Communicated by G. Klug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MK., Hsu, CH. & Sung, VL. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 280, 49–58 (2008). https://doi.org/10.1007/s00438-008-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0344-3

Keywords