Skip to main content
Log in

Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks

  • Arthropods and Medical Entomology - Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Southern Germany is known as tick-borne encephalitis (TBE) risk area; however, the north of the country is almost free of human TBE cases. Due to its location in the transition zone between TBE risk areas and areas with only sporadic cases, Saxony is of importance in the surveillance of TBE. Roe deer (Capreolus capreolus), showing high seroprevalence of TBE virus (TBEV) antibodies, are considered to be sentinels for TBE risk assessment. Thus, roe deer could be used as indicators helping to better understand the focality of the TBEV in nature and as a possible source to isolate TBEV. Therefore, the aims of this study were to examine roe deer coats for the presence of ticks to establish the tick burden and to detect the TBEV in attached ticks. One hundred thirty-four roe deer coats were provided by hunters from the Hunting Association in Saxony (August 2017–January 2019). The coats were frozen at − 80 °C and after de-freezing examined on both sides—inside and outside. Attached and nonattached ticks were collected, morphologically identified and tested using real-time RT-PCR for the presence of TBEV. In total, 1279 ticks were found on 48 coats. The predominant species was Ixodes ricinus (99.76%; n = 1276). Three remaining specimens were Ixodes spp. (0.16%, 1 female and 1 nymph) and Dermacentor reticulatus (0.08%, 1 male). The average infestation rate was 26.7 (SD = 69.5), with maximum of 439 ticks per animal. Females were the dominant life stage of ticks (n = 536; 42%), followed by nymphs (n = 397; n = 31.1%), males (n = 175; 13.7%), and larvae (n = 168; 13.2%). Only half of collected ticks were attached (n = 662; 51.8%). TBEV was detected only in one tick out of 1279 tested ticks. It was a female infesting a roe deer from Saxon Switzerland-East Ore Mountain. The results show that the method used in this study is not sufficient as a sentinel marker to predict TBEV spreading in nature. Although previous studies demonstrated the usefulness of serological testing of roe deer in order to trace TBE-endemic regions, using ticks attached to them to get virus isolates is not productive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

Download references

Acknowledgments

The authors would like to thank Johanna Fürst, Hannah Schmuck, and Philipp Koch for their help at the laboratory and collecting the samples. Funding by Pfizer Pharma GmbH (project no. WI211246) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Król.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Charlotte Oskam

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Król, N., Chitimia-Dobler, L., Dobler, G. et al. Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks. Parasitol Res 119, 1387–1392 (2020). https://doi.org/10.1007/s00436-020-06637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06637-z

Keywords

Navigation