Skip to main content

Advertisement

Log in

Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

We investigated patterns of helminth infection in two closely related rodents (social Rhabdomys pumilio occurring mainly in xeric habitats and solitary R. dilectus occurring mainly in mesic habitats) at 20 localities in different biomes of South Africa and asked if between-species differences were mainly caused by difference in sociality or difference in environmental conditions of their respective habitats. Helminths recovered from the gastrointestinal tract totalled 11 nematode and 5 cestode species from R. pumilio and 19 nematode and 7 cestode species from R. dilectus. In both hosts, mean abundance and prevalence of nematodes were higher compared to cestodes. Cestode infection as well as nematode abundance, species richness or prevalence did not differ between the two rodents. However, incidence of nematode infection was significantly higher in R. dilectus than in R. pumilio. Moreover, nematode numbers and species richness in infracommunities of R. pumilio inhabiting the relatively more xeric Karoo biome were significantly lower than in those inhabiting the relatively less xeric Fynbos biome. Although we could not unequivocally distinguish between effects of host sociality and environmental factors on the number of individuals and species of helminths in the two hosts, differences in the incidence of nematode infection between R. pumilio and R. dilectus as well as differences in the number of nematode individuals and species between R. pumilio from the Fynbos and the Karoo suggested the effect of environmental conditions on helminth infection to be more important than that of sociality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  • Apps P (2000) Smithers’ mammals of southern Africa. A field guide. Struik Nature, Cape Town

    Google Scholar 

  • Archer EK, Bennett NC, Faulkes CG, Lutermann H (2016) Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal. Oecologia 180:429–438

    Article  PubMed  Google Scholar 

  • Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Barnard CJ, Sayed E, Barnard LE, Behnke JM, Abdel Nabi I, Sherif N, Shutt A, Zalat S (2003) Local variation in helminth burdens of Egyptian spiny mice (Acomys cahirinus dimidiatus) from ecologically similar sites: relationships with hormone concentrations and social behaviour. J Helminthol 77:197–207

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014a) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823

  • Bates D, Maechler M, Bolker B, Walker S (2014b) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7

  • Behnke JM, Barnard CJ, Mason N, Harris PD, Sherif NE, Zalat S, Gilbert FS (2000) Intestinal helminths of spiny mice (Acomys cahirinus dimidiatus) from St Katherine’s protectorate in the Sinai, Egypt. J Helminthol 74:31–43

    CAS  PubMed  Google Scholar 

  • Behnke JM, Harris PD, Bajer A, Barnard CJ, Sherif N, Cliffe L, Hurst J, Lamb M, Rhodes A, James M, Clifford S, Gilbert FS, Zalat S (2004) Variation in the helminth community structure in spiny mice (Acomys dimidiatus) from four montane wadis in the St Katherine region of the Sinai Peninsula in Egypt. Parasitology 129:379–398

    Article  CAS  PubMed  Google Scholar 

  • Boomker J, Horak IG, Watermeyer R, Booyse DG (2000) Parasites of south African wildlife. XVI. Helminths of some antelope species from the Eastern and Western Cape Provinces. Onderstepoort J Vet Res 67:31–41

    CAS  PubMed  Google Scholar 

  • Bordes F, Blumstein DT, Morand S (2007) Rodent sociality and parasite diversity. Biol Lett 3:692–694

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordes F, Morand S, Kelt DA, Van Vuren DH (2009) Home range and parasite diversity in mammals. Am Nat 173:467–474

    Article  PubMed  Google Scholar 

  • Bordes F, Herbreteau V, Dupuy S, Chaval Y, Tran A, Morand S (2013) The diversity of microparasites of rodents: a comparative analysis that helps in identifying rodent-borne rich habitats in Southeast Asia. Inf Ecol Epid 3:20178. doi:10.3402/iee.v3i0.20178

    Google Scholar 

  • Botha M, Siebert SJ, van den Berg J (2016) Do arthropod assemblages fit the grassland and savanna biomes of South Africa? S Afr J Sci. doi:10.17159/sajs.2016/20150424

    Google Scholar 

  • Brouat C, Kane M, Diouf M, Bâ K, Sall-Dramé R, Duplantier JM (2007) Host ecology and variation in helminth community structure in Mastomys rodents from Senegal. Parasitology 134:437–450

    Article  CAS  PubMed  Google Scholar 

  • Carlberg KA, Lang BZ (2004) Infection with pinworms (Syphacia obvelata) does not affect the plasma corticosterone concentration in male, nonpregnant female and pregnant female rats. Contemp Top Lab Anim Sci 43(3):46–49

    CAS  PubMed  Google Scholar 

  • Cillié B (2011) The mammal guide of southern Africa. Briza, Pretoria

    Google Scholar 

  • Cizauskas CA, Turner WC, Pitts N, Getz WM (2015) Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS One 10:e0120800. doi:10.1371/journal.pone.0120800

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins HM (1972) Cestodes from rodents in the Republic of South Africa. Onderstepoort J Vet Res 39:25–50

    CAS  PubMed  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Cowling RM, Richardson DM, Pierce SM (2004) Vegetation of southern Africa. Cambridge University Press, Cambridge

    Google Scholar 

  • Cox RM, Parker EU, Cheney DM, Liebl AL, Martin LB, Calsbeek R (2010) Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct Ecol 24:1262–1269

    Article  Google Scholar 

  • Cramer MD, Hoffman MT (2015) The consequences of precipitation seasonality for Mediterranean-ecosystem vegetation of South Africa. PLoS One 10:e0144512. doi:10.1371/journal. pone.0144512

    Article  PubMed  PubMed Central  Google Scholar 

  • Cranford JA, Johnson EO (1983) Effects of coprophagy in microtine rodents. Eastern Pine and Meadow Vole Symposia. Paper 165 http://digitalcommons.unl.edu/voles/165

  • De Graaff G (1981) The rodents of southern Africa. Sigma Press, Pretoria, Butterworth

    Google Scholar 

  • Denegri GM (1993) Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Exp Appl Acarol 17:567–580

    Article  Google Scholar 

  • Dlugosz EM, Downs CJ, Khokhlova IS, Degen AA, Krasnov BR (2014) Ectoparasite performance when feeding on reproducing mammalian females: an unexpected decrease when on pregnant hosts. J Exp Biol 217:1058–1064

    Article  PubMed  Google Scholar 

  • Dufour CMS, Meynard C, Watson J, Rioux C, Benhamou S, Perez J, du Plessis JJ, Avenant N, Pillay N, Ganem G (2015) Space use variation in co-occurring sister species: response to environmental variation or competition? PLoS One 10(2):e0117750. doi:10.1371/journal.pone.0117750

    Article  PubMed  PubMed Central  Google Scholar 

  • Dybing NA, Fleming PA, Adams J (2013) Environmental conditions predict helminth prevalence in red foxes in Western Australia. Int J Parasitol Parasites Wildl 2:165–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott JM (1977) Some methods for the statistical analysis of samples of benthic invertebrates. Sci Publ Freshwater Biol Assoc, Ambleside, Cumbria

    Google Scholar 

  • Ezenwa VO (2004) Host social behavior and parasitic infection: a multifactorial approach. Behav Ecol 15:446–454

    Article  Google Scholar 

  • Faleh AB, Annabi A, López S, Said K, Ribas A (2012) On the helminth parasites of the genus Jaculus (Rodentia: Dipodidae) in Tunisia: a preliminary survey study. Leb Sci J 13:1107

    Google Scholar 

  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson J (2004) The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94

    Article  Google Scholar 

  • Festa-Bianchet M (1989) Individual differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). J Anim Ecol 58:785–795

    Article  Google Scholar 

  • Fichet-Calvet E, Wang J, Jomâa I, Ben Ismail R, Ashford RW (2003) Patterns of the tapeworm Raillietina trapezoides infection in the fat sand rat Psammomys obesus in Tunisia: season, climatic conditions, host age and crowding effects. Parasitology 126:481–492

    Article  CAS  PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Froeschke G, Matthee S (2014) Landscape characteristics influence helminth infestations in a peri-domestic rodent—implications for possible zoonotic disease. Parasit Vectors 7:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Froeschke G, Harf R, Sommer S, Matthee S (2010) Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa—implications for possible shifts in infestation patterns due to global changes. Oikos 119:1029–1039

    Article  Google Scholar 

  • Georgiev BB, Bray RA, Timothy D, Littlewood J (2006) Cestodes of small mammals: taxonomy and life cycles. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites, from evolutionary ecology to management. Springer, Tokyo, pp 29–62

    Chapter  Google Scholar 

  • Haukisalmi V, Henttonen H (2001) Biogeography of helminth parasitism in Lemmus Link (Arvicolinae), with the description of Paranoplocephala fellmani n. sp. (Cestoda: Anoplocephalidae) from the Norwegian lemming L. lemmus (Linnaeus). Syst Parasitol 49:7–22

    Article  CAS  PubMed  Google Scholar 

  • Heyward F, Tissot AN (1936) Some changes in the soil fauna associated with forest fires in the longleaf pine region. Ecology 17:659–666

    Article  Google Scholar 

  • Jameson EW Jr (1981) Patterns of vertebrate biology. Springer Science & Business Media. Springer, New York

  • Kenagy GJ, Veloso C, Bozinovic F (1999) Daily rhythms of food intake and feces reingestion in the degu, an herbivorous Chilean rodent: optimizing digestion through coprophagy. Physiol Biochem Zool 2:78–86

    Article  Google Scholar 

  • Kiffner C, Stanko M, Morand S, Khokhlova IS, Shenbrot GI, Laudisoit A, Leirs H, Hawlena H, Krasnov BR (2013) Sex-biased parasitism is not universal: evidence from rodent–flea associations from three biomes. Oecologia 173:1009–1022

    Article  PubMed  Google Scholar 

  • Kim JW, Jung C (2008) Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. J Asia Pac Entomol 11:77–81

    Article  Google Scholar 

  • Kinsella LM (1991) Comparison of helminths of three species of mice, Podomys floridanus, Peromyscus gossypinus, and Peromyscus polionotus, from southern Florida. Can J Zool 69:3079–3083

    Article  Google Scholar 

  • Krasnov BR, Korallo-Vinarskaya NP, Vinarski MV, Shenbrot GI, Mouillot D, Poulin R (2008) Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasitology 135:229–242

    CAS  PubMed  Google Scholar 

  • Krasnov BR, Bordes F, Khokhlova IS, Morand S (2012) Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia 76:1–13

    Article  Google Scholar 

  • Kristan DM (2004) Intestinal nematode infection affects host life history and offspring susceptibility to parasitism. J Anim Ecol 73:227–238

    Article  Google Scholar 

  • Lenth RV (2016) Least-squares means: the R package lsmeans. J Statistical Software 69:1–33

    Article  Google Scholar 

  • Lile NK (1998) Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology. J Fish Biol 53:945–953

    Article  Google Scholar 

  • Lo HY, Shaner PJL (2015) Sex-specific effects of parasitism on survival and reproduction of a rodent host in a subtropical montane region. Oecologica 177:657–667

    Article  Google Scholar 

  • Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76:326–335

    Article  Google Scholar 

  • Lutermann H, Bennet NC (2012) Determinants of helminth infection in a subterranean rodent, the cape dune mole-rate (Bathyergus suillus). J Parasitol 98:686–689

    Article  PubMed  Google Scholar 

  • Lutermann H, Bennett NC, Speakman JR, Scantlebury M (2013) Energetic benefits of sociality offset the costs of parasitism in a cooperative mammal. PLoS One 8:e57969. doi:10.1371/journal.pone.0057969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton SJ, Yeaton RI, Dean WRJ, Vlok JHJ (1997) Succulent Karoo. In: Cowling RM, Richardson DM, Pierce SM (eds) The vegetation of southern Africa. Cambridge University Press, Cambridge, pp 131–166

    Google Scholar 

  • Mitchell MJ (1978) Vertical and horizontal distributions of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 59:516–525

    Article  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  CAS  PubMed  Google Scholar 

  • Mor G, Cardenas I (2010) The immune system in pregnancy: a unique complexity. Am J Reprod Immunol 63:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor G, Cardenas I, Abrahams V, Guller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann New York Acad Sci 1221:80–87

    Article  CAS  Google Scholar 

  • Morand S, Gouy de Bellocq J, Stanko M, Miklisova D (2004) Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology 129:505–510

    Article  CAS  PubMed  Google Scholar 

  • Morand S, Bouamer S, Hugot J-P (2006) Nematodes. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites. Springer-Verlag, Berlin, pp 63–80

    Chapter  Google Scholar 

  • Moreno PG, Eberhardt MAT, Lamattina D, Previtali MA, Beldomenico PM (2013) Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species. Parasitol Res 112:3295–3304

    Article  CAS  PubMed  Google Scholar 

  • Morgan BB, Hawkins PA (1951) Veterinary helminthology. Burgess Publishing Company, Minneapolis

    Google Scholar 

  • Mouillot D, Krasnov BR, Shenbrot GI, Gaston KJ, Poulin R (2006) Conservatism of host specificity in parasites. Ecography 29:596–602

    Article  Google Scholar 

  • Mucina L, Rutherford MC (eds) (2006) The vegetation of South Africa, Lesotho and Swaziland, Strelitzia, vol 19. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Nordling D, Andersson M, Zohari S, Lars G (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298

    Article  Google Scholar 

  • Ortlepp RJ (1939) South African helminths, part VI. Some helminths, chiefly from rodents. Onderstepoort J Vet Sci Anim Ind 12:75–101

    Google Scholar 

  • Pakdeenarong N, Siribat P, Chaisiri K, Douangboupha B, Ribas A, Chaval Y, Herbreteau V, Morand S (2014) Helminth communities in murid rodents from southern and northern localities in Lao PDR: the role of habitat and season. J Helminthol 88:302–309

    Article  CAS  PubMed  Google Scholar 

  • Patterson JEH, Ruckstuhl KE (2013) Parasite infection and host group size: a meta-analytical review. Parasitology 140:803–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrin MR, Curtis BA (1980) Comparative morphology of the digestive system of 19 species of southern African myomorph rodents in relation to diet and evolution. S A J Zool 15:22–33

    Google Scholar 

  • Perrin MR, Ercoli C, Dempster ER (2001) The role of agonistic behaviour in the population regulation of two syntropic African grassland rodents, the striped mouse Rhabdomys pumilio (Sparrman 1784) and the multimammate mouse Mastomys natalensis (A. Smith 1834) (Mammalia Rodentia). Trop Zool 14:7–29

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016). Nlme: linear and nonlinear mixed effects models. R package version 3.1-128, http://CRAN.R-project.org/package=nlme.

  • Poulin R (1991) Group-living and infestation by ectoparasites in passerines. Condor 93:418–423

    Article  Google Scholar 

  • Poulin R, Mouillot D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126:473–480

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Mouillot D (2004) The evolution of taxonomic diversity in helminth assemblages of mammalian hosts. Evol Ecol 18:231–247

    Article  Google Scholar 

  • Procheş Ş, Cowling R (2007) Do insect distributions fit our biomes? S A J Sci 103:258–261

    Google Scholar 

  • Rambau RV, Robinson TJ, Stanyon R (2003) Molecular genetics of Rhabdomys pumilio subspecies boundaries: mtDNA phylogeography and karyotypic analysis by fluorescence in situ hybridization. Mol Phyl Evol 28:564–575

    Article  CAS  Google Scholar 

  • Ribas A, Casanova JC (2005) Helminths of Talpa europea (Insectivora, Talpidae) in southwestern Europe. Acta Parasitol 50:161–167

    Google Scholar 

  • Sanada Y, Aoki JI (1999) Distribution of oribatid mites as intermediate hosts of the horse tapeworm in pasture soils of Hidaka in Japan. J Acarol Soc Japan 8:159–163

    Article  Google Scholar 

  • Schradin C (2005) When to live alone and when to live in groups: ecological determinants of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784). Belg J Zool 135:77–82

    Google Scholar 

  • Schradin C (2006) Whole-day follows of striped mice (Rhabdomys pumilio), a diurnal murid rodent. J Ethol 24:37–43

    Article  Google Scholar 

  • Schradin C, Pillay N (2004) The striped mouse (Rhabdomys pumilio) from the succulent karoo of South Africa: a territorial group living solitary forager with communal breeding and helpers at the nest. J Comp Psychol 118:37–47

    Article  PubMed  Google Scholar 

  • Schradin C, Pillay N (2005) Intraspecific variation in the spatial and social organization of the African striped mouse. J Mammal 86:99–107

    Article  Google Scholar 

  • Schradin C, Pillay N (2006) Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Beh Ecol 17:452–458

    Article  Google Scholar 

  • Schuster R, Coetzee L, Putterill JF (2000) Orbatid mites (Acari, Oribatida) as intermediate host of tapeworms of the family Anopocephalida (Cestoda) and the transmission of Moniezia expansa cysticercoids in South Africa. Onderstepoort J Vet Res 67:49–55

    CAS  PubMed  Google Scholar 

  • Skinner JD, Chimimba CT (2005) The mammals of the southern African subregion, 3rd edn. Cambridge University Press, Cape Town

    Book  Google Scholar 

  • Song YT, Zhou DW, Zhang HX, Li GD, Jin JH, Li Q (2013) Effects of vegetation height and density on soil temperature variations. Chinese Sci Bull 58:907–912

    Article  Google Scholar 

  • Springer A, Kappeler PM (2016) Intestinal parasite communities of six sympatric lemur species at Kirindy Forest, Madagascar. Primate Biol 3:51–63

    Article  Google Scholar 

  • Stuart C, Stuart T (2007) Field guide to mammals of southern Africa, revised edn. Struik Nature, Cape Town

    Google Scholar 

  • Taffs LF (1976) Pinworm infections in laboratory rodents: a review. Lab Anim 10:1–13

    Article  CAS  PubMed  Google Scholar 

  • Taylor LR, Woiwod IP, Perry JN (1979) The negative binomial as a dynamic ecological model for aggregation, and the density dependence of k. J Anim Ecol 48:289–304

    Article  Google Scholar 

  • Torre I, Arrizabalaga A, Feliu C, Ribas A (2013) The helminth infracommunities of the wood mouse (Apodemus sylvaticus) two years after the fire in Mediterranean forests. Helminthologia 50:27–38

    Article  Google Scholar 

  • Turner WC, Getz WM (2010) Seasonal and demographic factors influencing gastrointestinal parasitism in ungulates of Etosha National Park. J Wildl Dis 46:1108–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Ubelaker JE (1970) Some observations on ecto- and endoparasites of Chiroptera. In: Slaughter BH, Walton DW (eds) About bats. Southern Methodist University Press, Dallas, pp 247–261

    Google Scholar 

  • Vandegrift KJ, Hudson PJ (2009) Could parasites destabilize mouse populations? The potential role of Pterygodermatites peromysci in the population dynamics of free-living mice, Peromyscus leucopus. Int J Parasitol 39:1253–1262

    Article  PubMed  Google Scholar 

  • Waterman JM, Macklin GF, Enright C (2013) Sex-biased parasitism in Richardson’s ground squirrels (Urocitellus richardsonii) depends on the parasite examined. Can J Zool 92:73–79

    Article  Google Scholar 

  • Watve MG, Sukumar R (1995) Parasite abundance and diversity in mammals: correlates with host ecology. Proc Natl Acad Sci U S A 92:8945–8949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertheim G, Schmidt GD, Greenberg Z (1986) Witenbergitaenia sinaica gen. n. sp. n. (Anoplocephalidae) and other cestodes from small mammals in Israel and in the Sinai Peninsula. Bull Mus Natl Hist Nat Zool, France 8:543–550

    Google Scholar 

  • Willis C, Poulin R (1999) Effects of the tapeworm Hymenolepis diminuta on maternal investments in rats. Can J Zool 77:1001–1005

    Article  Google Scholar 

  • Wirsing AJ, Azevedo FCC, Larivière S, Murray DL (2007) Patterns of gastrointestinal parasitism among five sympatric prairie carnivores: are males reservoirs? J Parasitol 93:504–510

    Article  PubMed  Google Scholar 

  • Yamaguti S (1961) The nematode parasites of vertebrates. Systema helminthum. III, Interscience Publishers, New York, In

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their helpful comments on the earlier version of the manuscript. We thank private landowners and nature reserve authorities for permitting us to conduct fieldwork on their properties, under the following provincial permit numbers: Eastern Cape, CRO37/11CR; KwaZulu-Natal, OP4990/2010; Western Cape, 0035-AAA007-00423; Northern Cape, FAUNA 1076/2011, Free State, 01/8091; Gauteng, CPF 6-0153 and Mpumalanga, MPB. 5331. We thank G. Froeschke for the identification of helminths that were recovered from most of the Fynbos localities as well as N. Avenant, M.D. Chipana, J. Coetsee L. Cohen, N. du Toit, A. Engelbrecht, G. Froeschke, R.F. Masubelle, C. A. Matthee, L. Richards and L. van der Mescht for the help with the field and technical work. Financial support for the project was provided by the National Research Foundation (NRF), Agricultural Research Council—Onderstepoort Veterinary Institute and Stellenbosch University. The Grant holder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF-supported research is those of the authors, and that the NRF accepts no liability whatsoever in this regard. This is publication no. 923 of the Mitrani Department of Desert Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Matthee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spickett, A., Junker, K., Krasnov, B.R. et al. Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors. Parasitol Res 116, 1395–1409 (2017). https://doi.org/10.1007/s00436-017-5419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5419-9

Keywords

Navigation