Skip to main content

Advertisement

Log in

Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Nosema bombycis, a microsporidium, is a pathogen of pebrine disease of silkworms, and its genomic DNA sequences had been determined. Thus far, the research of gene functions of microsporidium including N. bombycis cannot be performed with gain/loss of function. In the present study, we targeted to construct transgenic N. bombycis. Therefore, hemocytes of the infected silkworm were transfected with a non-transposon vector pIZT/V5-His vector in vivo, and the blood, in which the hemocyte with green fluorescence could be observed, was added to the cultured BmN cells. Furthermore, normal BmN cells were infected with germinated N. bombycis, and the infected cells were transfected with pIZT/V5-His. Continuous fluorescence observations exposed that there were N. bombycis with green fluorescence in some N. bombycis-infected cells, and the extracted genome from the purified N. bombycis spore was used as templates. PCR amplification was carried out with a pair of primers for specifically amplifying the green fluorescence protein (GFP) gene; a specific product representing the gfp gene could be amplified. Expression of the GFP protein through Western blotting also demonstrated that the gfp gene was perfectly inserted into the genome of N. bombysis. These results illustrated that exogenous gene can be integrated into N. bombycis genome by mediating with a non-transposon vector. Our research not only offers a strategy for research on gene function of N. bombycis but also provides an important reference for constructing genetically modified microsporidium utilized for biocontrol of pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, Mayanja H, Tumwine JK, Keeling PJ, Weiss LM, Tzipori S (2009) Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathog 5(1):e1000261

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardila-Garcia AM, Fast NM (2012) Microsporidian infection in a free-living marine nematode. Eukaryot Cell 11(12):1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becuel JJ, Andreadis TG (1999) Microsporidia in insects. In: Wittner M (ed) The microsporidia and microsporidiosis. ASM Press, Washington DC, pp 447–501

    Google Scholar 

  • Biderre C, Pagès M, Méténier G, David D, Bata J (1994) On small genomes in eukaryotic organisms: molecular karyotypes of two microsporidian species (Protozoa) parasites of vertebrates. C R Acad Sci III 317:399–404

    CAS  PubMed  Google Scholar 

  • Canning EU, Lom J, Dykova I (1986) The microsporidia of vertebrates. Academic, London

    Google Scholar 

  • Chen H, Cao G, Xue R, Gong C (2010) Expression of hGM-CSF in transformed silkworm BmN cells mediated by non-transposon vector. Chin J Biotechnol 26(6):830–836

    Google Scholar 

  • Chevalier M (1868) Expression universelle de 1867: rapports du jury international. Dupont, Paris

    Google Scholar 

  • Corradi N, Keeling PJ (2009) Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev 23:1–8

    Article  Google Scholar 

  • Corradi N, Gangaeva A, Keeling PJ (2008) Comparative profiling of overlapping transcription in the compacted genomes of microsporidia Antonospora locustae and Encephalitozoon cuniculi. Genomics 91(4):388–393

    Article  CAS  PubMed  Google Scholar 

  • Deplazes P, Mathis A, Weber R (2000) Epidemiology and zoonotic aspects of microsporidia of mammals and birds. Contrib Microbiol 6:236–260

    Article  CAS  PubMed  Google Scholar 

  • Didier ES, Stovall ME, Green LC, Brindley PJ, Sestak K, Didier PJ (2004) Epidemiology of microsporidiosis: sources and mode of transmission. Vet Parasitol 126(1):145–166

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Mu Z, Wang Y, Zhang S (2001) The research progression of Nosema bombycis. N Sericult 22(4):8–10

    Google Scholar 

  • Giselle M, Knudsen, Robert J, Chalkley (2011) The effect of using an inappropriate protein database for proteomic data analysis. PLoS One 6(6):e20873

    Article  Google Scholar 

  • Henry JE (1986) Effect of grasshopper species, cage density light intensity, and method of inoculation on mass production of Nosema locustae. (Microsporida: Nosematidae). J Econ Entomol 78:1245–1250

    Article  Google Scholar 

  • Irby WS, Huang YS, Kawanishi CY, Brooks WM (1986) Immunoblot analysis of exospores polypeptides from some entomophilicm microsporidia. J Protozool 33:14–20

    Article  CAS  Google Scholar 

  • Kawakami Y, Inoue T, Ito K, Kitamizu K, Hanawa C, Sunairi M, Ando T, Iwano H, Ishihara R (1994a) Comparison of chromosomal DNA from four microsporidia pathogenic to the silkworm, Bombyx mori. Appl Entomol Zool 29:120–123

    Google Scholar 

  • Kawakami Y, Inoue T, Ito K, Kitamizu K, Hanawa C, Ando T, Iwano H, Ishihara R (1994b) Identification of a chromosome harboring the small subunit ribosome RNA gene of Nosema bombycis. J Invertebr Pathol 64:147–148

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Fast NM, Law JS, Williams BA, Slamovits CH (2005) Comparative genomics of microsporidia. Folia Parasitol (Praha) 52(1–2):8–14

    Article  Google Scholar 

  • Liu JP, Xu XY (2000) History and current status of the prevalence of silkworm’s pebrine. Chin Sericult 1:9–12

    Google Scholar 

  • Liu JP, Cao Y, Smith JE, Xu XY (2004) Studies on the application of PCR molecular diagnosis to silkworms with simulated pebrine disease. Sci Agric Sin 37(12):1925–1931

    CAS  Google Scholar 

  • Méténier G, Vivarès CP (2001) Molecular characteristics and physiology of microsporidia. Microbes Infect 3:407–415

    Article  PubMed  Google Scholar 

  • Mutinelli F (2011) The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments. Rev Sci Tech 30(1):257–271

    CAS  PubMed  Google Scholar 

  • Nageli KW (1857) Uber die neue krankheit der seidenraupe und verwandte organismen. Bot Z 15:760–761

    Google Scholar 

  • Quatrefages MAD (1859) Etudes sur les maladies actuelles du ver a soie. Librairie de Victor Masson, Paris

  • Schwartz DA, Bryan RT (1999) The microsporidial infections: progress in epidemiology and prevention. In: ScheldWM, Craig WA, Hughes JM (eds) Emerging Infections 3. ASM Press, Washington DC, pp 73–98

  • Sprague V (1977) Systematics of the microsporidia. In: Bulla LA Jr, Cheng TC (eds) Comparative pathobiology, vol 2. Plenum Press, New York, pp 1–510

    Chapter  Google Scholar 

  • Sprague V, Becnel JJ (1998) Note on the name-author-date combination for the taxon Microsporidies Balbiani, 1882, when ranked as a phylum. J Invertebr Pathol 71:91–94

    Article  PubMed  Google Scholar 

  • Texier C, Brosson D, El AH, Méténier G, Vivarès CP (2005) Post-genomics of microsporidia, with emphasis on a model of minimal eukaryotic proteome: a review. Folia Parasitol (Praha) 52(1–2):15–22

    Article  CAS  Google Scholar 

  • Texier C, Vidau C, Viguès B, El AH, Delbac F (2010) Microsporidia: a model for minimal parasite-host interactions. Curr Opin Microbiol 13(4):443–449

    Article  PubMed  Google Scholar 

  • Valencakova A, Halanova M (2012) Immune response to Encephalitozoon infection review. Comp Immunol Microbiol Infect Dis 35(1):1–7

    Article  PubMed  Google Scholar 

  • Vavra J, Larsson JIR (1999) Structure of the microsporidia. In: Wittner M, Weiss LM (eds) The Microsporidia and Microsporidiosis. ASM Press, Washington DC, pp 7–84

    Chapter  Google Scholar 

  • Wang LY, Yu XG (1994) The mass production and application of Nosema Locustae against grasshoppers. Acta Agrestia Sin 2:49–54

    CAS  Google Scholar 

  • Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human microsporidial infections. Clin Microbiol Rev 7:426–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss LM, Vossbrinck CR (1998) Microsporidiosis: molecular and diagnostic aspects. J Adv Parasitol 40:351–395

    Article  CAS  Google Scholar 

  • Zhang P, Wang J, Lu Y, Hu Y, Xue R, Cao G, Gong C (2014) Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther Jan 21(1):81–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (31272500), the National Basic Research Program of China (973 Program, 2012CB114600), the Specialized Research Fund for the Doctoral Program of Higher Education (20113201130002), and a project funded by the Priority Academic Program of Development of Jiangsu Higher Education Institutions. We thank Dr. Dhiraj Kumar for help with language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengliang Gong.

Additional information

Rui Guo, Guangli Cao, and Yahong Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Cao, G., Lu, Y. et al. Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector. Parasitol Res 115, 3093–3098 (2016). https://doi.org/10.1007/s00436-016-5064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5064-8

Keywords

Navigation