Skip to main content
Log in

Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis (CsRab8) was composed of 199 amino acids. The deduced amino acid sequence shared above 50 % identities with other species from trematode, tapeworm, mammal, insecta, nematode, and reptile, respectively. The homologous analysis of sequences showed the conservative domains: G1 box (GDSGVGKS), G2 box (T), G3 box (DTAG), G4 box (GNKCDL), and G5 box. In addition, the structure modeling had also shown other functional domains: GTP/Mg2+ binding sites, switch I region, and switch II region. A phylogenic tree analysis indicated that the CsRab8 was clustered with the Rab from Schistosoma japonicum, and trematode and tapeworm came from the same branch, which was different from an evolutional branch built by other species, such as mammal animal, insecta, nematode, and reptile. The recombinant CsRab8 protein was expressed in Escherichia coli and the purified protein was a soluble molecule by 12 % sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. CsRab8 was identified as a component of excretory/secretory products of C. sinensis by western blot analysis. The transcriptional level of CsRab8 at metacercaria stage was the highest at the four stages and higher by 56.49-folds than that at adult worm, 1.23-folds than that at excysted metacercaria, and 2.69-folds than that at egg stage. Immunohistochemical localization analysis showed that CsRab8 was specifically distributed in the tegument, vitellarium, eggs, and testicle of adult worms, and detected on the vitellarium and tegument of metacercaria. Combined with the results, CsRab8 is indispensable for survival and development of parasites, especially for regulating excretory/secretory products secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Burton J, De Camilli P (1994) A novel mammalian guanine nucleotide exchange factor (GEF) specific for rab proteins. Adv Second Messenger Phosphoprotein Res 29:109–119

    Article  CAS  PubMed  Google Scholar 

  • Burton JL, Burns ME, Gatti E, Augustine GJ, De Camilli P (1994) Specific interactions of Mss4 with members of the Rab GTPase subfamily. EMBO J 13(23):5547–5558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burton JL, Slepnev V, De Camilli PV (1997) An evolutionarily conserved domain in a subfamily of Rabs is crucial for the interaction with the guanyl nucleotide exchange factor Mss4. J Biol Chem 272(6):3663–3668

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, Wang CC, Perez Rangel A, Camacho Nuez M, Garcia Tovar C, Ayala-Sumuano JT, Luna-Arias JP, Hernandez JM (2010) Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall. PLoS Negl Trop Dis 4(6):e697

    Article  PubMed Central  PubMed  Google Scholar 

  • Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11(4):466–475

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang X, Deng C, Lv X, Fan Y, Men J, Liang C, Yu X (2011) Molecular cloning and characterization of a novel ras-related protein (rap2) from Clonorchis sinensis. Parasitol Res 108(4):1021–1026

    Article  PubMed  Google Scholar 

  • Chua CE, Tang BL (2015) The role of the small GTPase Rab31 in cancer. J Cell Mol Med 19(1):1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004(250):RE13

    PubMed Central  PubMed  Google Scholar 

  • Ezougou CN, Ben-Rached F, Moss DK, Lin JW, Black S, Knuepfer E, Green JL, Khan SM, Mukhopadhyay A, Janse CJ, Coppens I, Yera H, Holder AA, Langsley G (2014) Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PLoS One 9(2):e87695

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong ST, Fang Y (2012) Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 61(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Li Y, Huang Y, Chen T, Li S, Xu Y, Wu Z, Li X, Yu X (2013) Molecular characterization and expression of Rab7 from Clonorchis sinensis and its potential role in autophagy. Parasitol Res 112(7):2461–2467

    Article  PubMed  Google Scholar 

  • Kim TI, Cho PY, Yoo WG, Li S, Hong SJ (2008) Bile-induced genes in Clonorchis sinensis metacercariae. Parasitol Res 103(6):1377–1382

    Article  PubMed  Google Scholar 

  • Kiss RS, Nilsson T (2014) Rab proteins implicated in lipid storage and mobilization. J Biomed Res 28(3):169–177

    PubMed Central  PubMed  Google Scholar 

  • Kumar Srivastava V, Chandra M, Datta S (2014) Crystallization and preliminary X-ray analysis of RabX3, a tandem GTPase from Entamoeba histolytica. Acta Crystallogr F Struct Biol Commun 70(Pt7):933–937

    Article  CAS  PubMed  Google Scholar 

  • Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, Bishop R, Pain A (2008) Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect 10(5):462–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang P, Sun J, Huang Y, Zhang F, Zhou J, Hu Y, Wang X, Liang C, Zheng M, Xu Y, Mao Q, Hu X, Li X, Xu J, Lu G, Yu X (2013a) Biochemical characterization and functional analysis of fructose-1,6-bisphosphatase from Clonorchis sinensis. Mol Biol Rep 40(7):4371–4382

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Zhang F, Chen W, Hu X, Huang Y, Li S, Ren M, He L, Li R, Li X, Xu J, Wu Z, Lu G, Yu X (2013b) Identification and biochemical characterization of adenylate kinase 1 from Clonorchis sinensis. Parasitol Res 112(4):1719–1727

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41

    Article  PubMed  Google Scholar 

  • Mitra BN, Saito-Nakano Y, Nakada-Tsukui K, Sato D, Nozaki T (2007) Rab11B small GTPase regulates secretion of cysteine proteases in the enteric protozoan parasite Entamoeba histolytica. Cell Microbiol 9(9):2112–2125

    Article  CAS  PubMed  Google Scholar 

  • Mitra BN, Pradel G, Frevert U, Eichinger D (2010) Compounds of the upper gastrointestinal tract induce rapid and efficient excystation of Entamoeba invadens. Int J Parasitol 40(6):751–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier C, Brunger AT (1999) Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96(3):363–374

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Singh SB, Basu SK, Mukhopadhyay A (2008) Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth. Proc Natl Acad Sci U S A 105(10):3980–3985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeffer SR (1994) Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol 6(4):522–526

    Article  CAS  PubMed  Google Scholar 

  • Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79(3):269–281

    Article  PubMed  Google Scholar 

  • Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S (2009) An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 8(8):1891–1907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romero-Diaz M, Gomez C, Lopez-Reyes I, Martinez MB, Orozco E, Rodriguez MA (2007) Structural and functional analysis of the Entamoeba histolytica EhrabB gene promoter. BMC Mol Biol 8:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Segev N (2001) Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001(100):re11

    CAS  PubMed  Google Scholar 

  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2(5):1–7

    Article  Google Scholar 

  • Strick DJ, Francescutti DM, Zhao Y, Elferink LA (2002) Mammalian suppressor of Sec4 modulates the inhibitory effect of Rab15 during early endocytosis. J Biol Chem 277(36):32722–32729

    Article  CAS  PubMed  Google Scholar 

  • Stroupe C, Brunger AT (2000) Crystal structures of a Rab protein in its inactive and active conformations. J Mol Biol 304(4):585–598

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen W, Hu F, Deng C, Zhou C, Lv X, Fan Y, Men J, Huang Y, Sun J, Hu D, Chen J, Yang Y, Liang C, Zheng H, Hu X, Xu J, Wu Z, Yu X (2011) Clonorchis sinensis enolase: identification and biochemical characterization of a glycolytic enzyme from excretory/secretory products. Mol Biochem Parasitol 177(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Qian X, Huang Y, Hong Q (2012) A review of the control of clonorchiasis sinensis and Taenia solium taeniasis/cysticercosis in China. Parasitol Res 111(5):1879–1884

    Article  PubMed  Google Scholar 

  • Xu XF, Chen ZT, Zhang JL, Chen W, Wang JL, Tian YP, Gao N, An J (2008) Rab8, a vesicular traffic regulator, is involved in dengue virus infection in HepG2 cells. Intervirology 51(3):182–188

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Hu K, Liu W, Hu X, Hu F, Huang L, Wang P, Hu Y, Huang Y, Li W, Liang C, Yin X, He Q, Yu X (2011) Proteomic analysis of excretory secretory products from Clonorchis sinensis adult worms: molecular characterization and serological reactivity of a excretory-secretory antigen-fructose-1,6-bisphosphatase. Parasitol Res 109(3):737–744

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Basic Research and Development Project of China (973 project; No. 2010CB530000), National Natural Science Foundation of China (No. 81101270 and No. 81171602), National S & T Major Program (No. 2012ZX10004-220), and Fundamental Research Funds for the Central Universities (No. 3164035 and No. 3161036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Lu or Xinbing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, P., He, L., Yu, J. et al. Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis . Parasitol Res 114, 1857–1864 (2015). https://doi.org/10.1007/s00436-015-4372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4372-8

Keywords

Navigation