Skip to main content
Log in

Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L.

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Pyriproxyfen, a juvenile hormone mimic, is an effective larvicide against many pests of veterinary and public health importance. Pyriproxyfen is a biorational insecticide having many environmentally friendly attributes that make it compatible with integrated pest management programs. This experiment was performed for the assessment of resistance evolution and reversion toward susceptibility of Musca domestica to pyriproxyfen. Repeated selection at successive generations resulted in 5.09- and 130-fold increase in lethal concentration 50 (LC50) compared to field and susceptible strain, respectively. A significant decline after 22 generations without selection suggesting resistance to pyriproxyfen was unstable in M. domestica. Realized heritability (h 2) of resistance to pyriproxyfen was 0.035 in pyriproxyfen-selected strain of M. domestica. The projected rate of resistance development indicated that, if slope = 1.28 and h 2 = 0.035, then 46–21 generations are required for 10-fold increase in LC50 at 50–90 % selection intensity. These findings suggest that a risk for resistance development to pyriproxyfen occurred in M. domestica under continuous selection pressure. Pyriproxyfen susceptibility reversed when its application is ceased for a specified duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas N, Khan HAA, Shad SA (2014a) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113:1343–1352

    Article  PubMed  Google Scholar 

  • Abbas N, Khan HAA, Shad SA (2014b) Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23:791–801

    Article  CAS  PubMed  Google Scholar 

  • Acevedo GR, Zapater M, Toloza AC (2009) Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitol Res 105:489–493

    Article  PubMed  Google Scholar 

  • Bell HA, Robinson KA, Weaver RJ (2010) First report of cyromazine resistance in a population of UK house fly (Musca domestica) associated with intensive livestock production. Pest Manag Sci 66:693–695

    Article  CAS  PubMed  Google Scholar 

  • Carrière Y (2003) Haplodiploidy, sex, and the evolution of pesticide resistance. J Econ Entomol 96:1626–1640

    Article  PubMed  Google Scholar 

  • Cetin H, Erler F, Yanikoglu A (2006) Larvicidal activity of novaluron, a chitin synthesis inhibitor, against the housefly, Musca domestica. J Insect Sci 6:50

    Article  PubMed Central  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edition. Longman, New York

    Google Scholar 

  • Ferguson JS (2004) Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. J Econ Entomol 97:112–119

    Article  CAS  PubMed  Google Scholar 

  • Finney D (1971) A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edn. Cambridge University Press, London, p 333

    Google Scholar 

  • Firkoi MJ, Hayes JL (1990) Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance. J Econ Entomol 83:647–654

    Article  Google Scholar 

  • Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246

    Article  PubMed  Google Scholar 

  • Geden CJ, Devine GJ (2012) Pyriproxyfen and house flies (Diptera: Muscidae): effects of direct exposure and autodissemination to larval habitats. J Med Entomol 49:606–613

    Article  CAS  PubMed  Google Scholar 

  • Højland DH, Scott JG, Jensen K-MV, Kristensen M (2013) Autosomal male determination in a spinosad-resistant housefly strain from Denmark. Pest Manag Sci. doi:10.1002/ps.3655

    Google Scholar 

  • Invest J, Lucas J (2008) Pyriproxyfen as a mosquito larvicide. Sixth International Conference on Urban Pests, Veszprém

  • Jutsum AR, Heaney SP, Perrin BM, Wege PJ (1998) Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pestic Sci 54:435–446

    Article  CAS  Google Scholar 

  • Kaufman PE, Scott JG, Rutz DA (2001) Monitoring insecticide resistance in house flies (Diptera: Muscidae) from New York dairies. Pest Manag Sci 57:514–521

    Article  CAS  PubMed  Google Scholar 

  • Kaufman PE, Nunez SC, Geden CJ, Scharf ME (2010a) Selection for resistance to imidacloprid in the house fly (Diptera: Muscidae). J Econ Entomol 103:1937–1942

    Article  CAS  PubMed  Google Scholar 

  • Kaufman PE, Nunez SC, Mann RS, Geden CJ, Scharf ME (2010b) Nicotinoid and pyrethroid insecticide resistance in houseflies (Diptera: Muscidae) collected from Florida dairies. Pest Manag Sci 66:290–294

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Shad SA, Akram W (2012) Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae). Parasitol Res 111:1165–1171

    Article  PubMed  Google Scholar 

  • Khan HAA, Shad SA, Akram W (2013) Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan. Parasitol Res 112:2049–2054

    Article  PubMed  Google Scholar 

  • Khan H, Abbas N, Shad SA, Afzal MBS (2014a) Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pestic Biochem Physiol 114:38–43

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Akram W, Shad SA (2014b) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 130:148–154

    Article  CAS  Google Scholar 

  • Kristensen M, Jespersen JB (2003) Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. J Econ Entomol 96:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Mishra S, Malik A, Satya S (2013) Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1, 8-cineole). Parasitol Res 112:69–76

    Article  PubMed  Google Scholar 

  • Lai T, Su J (2011) Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 67:1468–1472

    Article  CAS  PubMed  Google Scholar 

  • Mojaver M, Bandani A (2010) Effects of the insect growth regulator pyriproxyfen on immature stages of sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutelleridae). Munis Entomol Zool 5:187–197

    Google Scholar 

  • Moon R, Hinton J, O’Rourke S, Schmidt D (2001) Nutritional value of fresh and composted poultry manure for house fly (Diptera: Muscidae) larvae. J Econ Entomol 94:1308–1317

    Article  CAS  PubMed  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197

    Article  PubMed  Google Scholar 

  • Pu X, Yang Y, Wu S, Wu Y (2010) Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Manag Sci 66:371–378

    CAS  PubMed  Google Scholar 

  • Rosenheim J (1991) Realized heritability estimation for pesticide resistance traits. Entomol Exp Appl 58:93–97

    Article  Google Scholar 

  • Roush RT, Croft B (1986) Experimental population genetics and ecological studies of pesticide resistance in insects and mites. In: Pesticide resistance: strategies and tactics for management. Nat. Acad. Press, Washington, pp 257–270

    Google Scholar 

  • Scott J, Roush R, Liu N (1991) Selection of high-level abamectin resistance from field-collected house flies, Musca domestica. Experientia 47:288–291

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 56:147–153

    Article  CAS  Google Scholar 

  • Seng CM, Setha T, Nealon J, Socheat D, Nathan MB (2008) Six months of Aedes aegypti control with a novel controlled-release formulation of pyriproxyfen in domestic water storage containers in Cambodia. Southeast Asian J Trop Med Public Health 39:822–826

    CAS  PubMed  Google Scholar 

  • Shi J, Zhang L, Gao X (2011) Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 67:335–340

    Article  CAS  PubMed  Google Scholar 

  • Shono T, Zhang L, Scott JG (2004) Indoxacarb resistance in the house fly, Musca domestica. Pestic Biochem Physiol 80:106–112

    Article  CAS  Google Scholar 

  • Sial AA, Brunner JF (2010) Assessment of resistance risk in obliquebanded leafroller (Lepidoptera: Tortricidae) to the reduced-risk insecticides chlorantraniliprole and spinetoram. J Econ Entomol 103:1378–1385

    Article  CAS  PubMed  Google Scholar 

  • Sial AA, Brunner JF (2012) Selection for resistance, reversion towards susceptibility and synergism of chlorantraniliprole and spinetoram in obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Manag Sci 68:462–468

    Article  CAS  PubMed  Google Scholar 

  • Slansky F, Scriber J (1985) Food consumption and utilization. Compr Insect Physiol, Biochem Pharmacol 4:87–163

    Google Scholar 

  • Tabashnik BE (1992) Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551–1559

    Article  Google Scholar 

  • Tabashnik BE, McGaughey WH (1994) Resistance risk assessment for single and multiple insecticides: responses of Indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J Econ Entomol 87:834–841

    Article  Google Scholar 

  • Tanaka Y, Noppun V (1989) Heritability estimates of phenthoate resistance in the diamond-back moth. Entomol Exp Appl 52:39–47

    Article  Google Scholar 

  • Tang JD, Caprio MA, Sheppard DC, Gaydon DM (2002) Genetics and fitness costs of cyromazine resistance in the house fly (Diptera: Muscidae). J Econ Entomol 95:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Wilson TG (2004) The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. J Insect Physiol 50:111–121

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Moshitzky P, Laor E, Ghanim M, Rami Horowitz A, Morin S (2007) Reversal of resistance to pyriproxyfen in the Q biotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 63:761–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shi J, Gao X (2008) Inheritance of beta-cypermethrin resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 64:185–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Rachel Lehrer, strategist at Continuum Innovation, 1220 Washington St. West Newton, MA 02465, for critical review of manuscript to improve English language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizwan Mustafa Shah or Sarfraz Ali Shad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.M., Abbas, N., Shad, S.A. et al. Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L.. Parasitol Res 114, 487–494 (2015). https://doi.org/10.1007/s00436-014-4206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4206-0

Keywords

Navigation