Skip to main content

Advertisement

Log in

Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Dengue fever, currently the most important arbovirus, is transmitted by the bite of the Aedes aegypti mosquito. Given the absence of a prophylactic vaccine, the disease can only be controlled by combating the vector insect. However, increasing reports of resistance and environmental damage caused by insecticides have led to the urgent search for new safer alternatives. In this regard, plants stand out as a source of easy-to-obtain biodegradable insecticide molecules. Twenty (20) plant seed extracts from the Caatinga, an exclusively Brazilian biome, were prepared. Sodium phosphate (50 mM, pH 8.0) was used as extractor. The extracts were used in bioassays and submitted to partial characterisation. A Probit analysis of insecticides was carried out, and intergroup differences were verified by the Student’s t test and ANOVA. All the extracts exhibited larvicidal and ovipositional deterrence activity. The extracts of Amburana cearenses, Piptadenia viridiflora, Erythrina velutina, Myracrodruon urundeuva and Schinopsis brasiliensis were also pupicides, while the extracts of P. viridiflora, E. velutina, A. cearenses, Anadenanthera colubrina, Diocleia grandiflora, Bauhinia cheilantha, Senna spectabilis, Caesalpinia pyramidalis, Mimosa regnelli and Genipa americana displayed adulticidal activity. Egg laying was compromised when females were fed extracts of Ricinus communis, Croton sonderianus and S. brasiliensis. At least two proteins with insecticidal activity were found in all the extracts. Phenol compounds were identified in all the extracts and flavonoids, triterpenes or alkaloids in 14 of them. The results show the potential of plant seed extracts from the Caatinga as a source of active molecules against A. aegypti mosquitos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ABNT (2005) Ecotoxicologia aquática: Método de ensaio com Ceriodaphnia dubia (Crustácea Cladócera) NBR 13373. Janeiro, Rio de

    Google Scholar 

  • Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Lins Neto EMF, Melo JG, Santos JP (2007) Medicinal plants of the Caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354

    Article  PubMed  Google Scholar 

  • Albuquerque IGC, Marandino R, Mendonça AL, Nogueira RMR, Vasconcelos PFC, Guerra GRA, Bacco PAM (2012) Chikungunya virus infection: report of the first case diagnosed in Rio de Janeiro. Rev Soc Bras Med Trop 45:128–129

    Article  PubMed  Google Scholar 

  • Ali H, Houghton PJ, Soumyanath A (2006) α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol 107:449–455

    Article  PubMed  Google Scholar 

  • Ali MS, Ravikumar S, Beula JM (2012) Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae. Asian Pac J Trop Biomed 2:570–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo EL, Castro CC, Albuquerque UP (2007) Dynamics of Brazilian Caatinga. Funct Ecosyst Commun 1:15–28

    Google Scholar 

  • Araujo TAS, Alencar NL, Amorim ELC, Albuquerque UP (2008) A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol 120:72–80

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carlini CR, Grossi-De-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potential as bioinsecticides. Toxicon 40:1515–1539

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti LPG, Pontes RJS, Regazzi ACF, Paula Junior FJ, Frutuoso RL, Sousa EP, Dantas Filho FF, Lima JWO (2007) Competência de peixes como predadores de larvas de Aedes aegypti, em condições de laboratório. Rev Saude Publica 41:638–644

    Article  PubMed  Google Scholar 

  • Chapagain BP, Saharan V, Wiesman Z (2008) Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour Technol 99:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Chhabra M, MittalV BD, Rana UVS, Lal S (2008) Chikungunya fever: a re-emerging viral infection. Indian J Med Microbiol 26:5–12

    Article  PubMed  CAS  Google Scholar 

  • Coelho JS, Santos NDL, Napoleão TH, Gomes FS, Ferreira RS, Zingali RB, Coelho LCBB, Leite SP, Navarro DMAF, Paiva PMG (2009) Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere 77:934–938

    Article  PubMed  CAS  Google Scholar 

  • Coria C, Almiron W, Valladares G, Ludueña F, Defago M, Palacios S (2008) Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresour Technol 99:3066–3070

    Article  PubMed  CAS  Google Scholar 

  • Correia RTP, Mccue P, Magalhães MMA, Macêdo GR, Shetty K (2004) Production of phenolic antioxidants by the solid-state bioconversion pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochem 39:2167–2172

    Article  CAS  Google Scholar 

  • Cruz ACB, Massena FS, Migliolo L, Macedo LLP, Monteiro NKV, Oliveira AS, Macedo FP, Uchoa AF, Grossi-de-Sá MF, Vasconcelos IM, Murad AM, Franco OL, Santos EA (2013) Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiol Biochem 70:61–68

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Farias DF, Cavalheiro MG, Viana MP, Queiroz VA, Rocha-Bezerra LCB, Vasconcelos IM, Morais SM, Carvalho AFU (2010) Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L. An Acad Bras Cienc 82:585–594

    Article  PubMed  Google Scholar 

  • Fernández LE, Gómez I, Pacheco S, Arenas I, Gilla SS, Bravo A, Soberón M (2008) Employing phage display to study the mode of action of Bacillus thuringiensis cry toxins. Peptides 29:324–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Garcez WS, Garcez FR, Silva LMGE, Hamerski L (2009) Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresour Technol 100:6647–6650

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, MathivananT EK, Krishnappa K, Anandan A (2011) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1:43–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta L, Deshpande S, Tare V, Sabharwal S (2011) Larvicidal activity of the a-amylase inhibitor from the seeds of Macrotyloma uniflorum (Leguminosae) against Aedes aegypti (Diptera: Culicidae). Int J Trop Insect Sci 31:69–74

    Article  Google Scholar 

  • Isoe J, Rascon AA Jr, Kunz S, Miesfeld RL (2009a) Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 39:903–912

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Isoe J, Zamora J, Miesfeld RL (2009b) Molecular analysis of the Aedes aegypti carboxypeptidase gene family. Insect Biochem Mol Biol 39:68–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaur M, Singh K, Rup PJ, Saxena AK, Khan RH, Ashraf MT, Kamboj SS, Singh J (2006) A tuber lectin from Arisaema helleborifolium Schott with anti-insect activity against melon fruit fly, Bactrocera cucurbitae (Coquillett), and anti-cancer effect on human cancer cell. Arch Biochem Biophys 445:156–165

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Kondo S, Uchiyama N (2008) Larvicidal activities of sesquiterpenes from Inula helenium (Compositae) against Aedes albopictus (Diptera: Culicidae) and Paratanytarsus grimmii (Diptera: Chironomidae). Appl Entomol Zool 43:77–81

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Luna JS, Santos AF, Lima MRF, Omena MC, Mendonca FAC, Biebera LW, Sant’ana AEG (2005) A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. J Ethnopharmacol 97:199–206

    Article  Google Scholar 

  • Macedo MLR, Damico DCS, Freire MGM, Toyama MH, Marangoni S, Novello JC (2003) Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J Agric Food Chem 51:2980–2986

    Article  PubMed  Google Scholar 

  • Macedo MLR, Castro MM, Freire MGM (2004) Mechanisms of the insecticidal action of TEL (Talisia esculenta lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae). Arch Insect Biochem Physiol 56:84–96

    Article  PubMed  CAS  Google Scholar 

  • Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB (2007) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera:Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol 146:486–498

    Article  Google Scholar 

  • Macedo LLP, Amorim TML, Uchôa AF, Oliveira AS, Ribeiro JKC, Macedo FP, Santos EA, Sales MP (2008) Larvicidal effects of a chitin-binding vicilin from Erythrina velutina seeds on the mediterranean fruit fly Ceratitis capitata. J Agric Food Chem 54:202–808

    Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Maliar T, Jedinák A, Kadrabová J, Sturdík E (2004) Structural aspects of flavonoids as trypsin inhibitors. Eur J Med Chem 39:241–248

    Article  PubMed  CAS  Google Scholar 

  • Medeiros VF, Ximenes MFFM (2013) Potencial larvicida de plantas do semi-árido do nordeste do Brasil no controle de Aedes aegypti. Tecnol Desenv Sustent 2013, in press

  • Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, Furtado AF, Magalhaes T, Macoris MLG, Andrighetti MTM, Ayresa CFJ (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113:180–189

    Article  PubMed  CAS  Google Scholar 

  • Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Levy CMD, Honorio NA, Domont GB, Jesus JB (2011) Expression of trypsin-like serine peptidases in preimaginal stages of Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 76:223–235

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Mota AC, Da Matta RA, Lima Filho M, Silva CP, Xavier-Filho J (2003) Cowpea (Vigna unguiculata) vicilins bind to the peritrophic membrane of larval sugarcane stalk borer (Diatraea saccharalis). J Insect Physiol 49:873–880

    Article  PubMed  CAS  Google Scholar 

  • Moura FT, Oliveira AS, Macedo LLP, Vianna ALBR, Andrade LBS, Martins-Miranda AS, Oliveira JTA, Santos EA, Sales MP (2007) Effects of a chitin-binding vicilin from Enterolobium contortisiliquum seeds on bean bruchid pests (Callosobruchus maculatus and Zabrotes subfasciatus) and phytopathogenic fungi (Fusarium solani and Colletrichum lindemuntianum). J Agric Food Chem 55:260–266

    Article  PubMed  CAS  Google Scholar 

  • Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn. against dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Bioresour Technol 98:198–201

    Article  PubMed  CAS  Google Scholar 

  • Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, Navarro DMAF, Paiva PMG (2012) Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 110:609–616

    Article  PubMed  Google Scholar 

  • Omena MC, Navarro DMAF, De Paula JE, Luna JS, De Lima MRF, Sant’ana AEG (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 98:2549–2556

    Article  PubMed  Google Scholar 

  • Patil SV, Patil CD, Salunkhe RB, Salunke BK (2010) Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Trop Biomed 27:360–365

    PubMed  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulate. Parasitol Res 108:1253–1263

    Article  PubMed  Google Scholar 

  • Pessoa C, Costa-Lotufo LV, Leyva A, Moraes MEA, Moraes MO (2006) Anticancer potential of Northeast Brazilian plants. L Mol Nat Prod 2:197–2011

    CAS  Google Scholar 

  • Pluempanupat S, Kumrungsee N, Pluempanupat W, Ngamkitpinyo K, Chavasiri W, Bullangpoti V, Koul O (2013) Laboratory evaluation of Dalbergia oliveri (Fabaceae: Fabales) extracts and isolated isoflavonoids on Aedes aegypti (Diptera: Culicidae) mosquitoes. Ind Crop Prod 44:653–658

    Article  CAS  Google Scholar 

  • Pontual EV, Napoleão TH, Assis CRD, Bezerra RS, Xavier HS, Navarro DMAF, Barroso LCBC, Paiva PMG (2012) Effect of Moringa oleifera flower extract on larval trypsin and acethylcholinesterase activities in Aedes aegypti. Arch Insect Biochem Physiol 79:135–152

    Article  PubMed  CAS  Google Scholar 

  • Quiroz-Martínez H, Garza-Rodríguez MI, Trujillo-González MI, Zepeda-Cavazos IG, Siller-Aguillon I, Martínez-Perales JF, Rodríguez-Castro VA (2012) Selection of oviposition sites by female Aedes aegypti exposed to two larvicides. J Am Mosq Control Assoc 28:47–49

    Article  PubMed  Google Scholar 

  • Rajasekaran A, Duraikannan G (2012) Larvicidal activity of plant extracts on Aedes Aegypti L. Asian Pac J Trop Biomed 2:1578–1582

    Article  Google Scholar 

  • Ravindran J, Samuel T, Alex E, William J (2012) Adulticidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against three vector mosquito species (Diptera: Culicidae). Asian Pac J Trop Dis 2:177–179

    Article  Google Scholar 

  • Sá RA, Santos NDL, Silva CSB, Napoleão TH, Gomes FS, Cavada BS, Coelho LCBB, Navarro DMAF, Bieber LW, Paiva PMG (2009) Larvicidal activity of lectins from Myracrodruon urundeuva on Aedes aegypti. Comp Biochem Physiol Part C: Toxicol Pharmacol 149:300–306

    Google Scholar 

  • Sales MP, Pimenta PP, Paes NS, Grossi-De-Sa MF, Xavier J (2001) Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. Braz J Med Biol Res 34:27–34

    Article  PubMed  CAS  Google Scholar 

  • Shafie FA, Tahir MPM, Sabri NM (2012) Aedes mosquitoes resistance in urban community setting. Procedia Soc Behav Sci 36:70–76

    Article  Google Scholar 

  • Shen M, Kumar A, Ding S, Grocke S (2012) Comparative study on the toxicity of pyrethroids, a-cypermethrin and deltamethrin to Ceriodaphnia dubia. Ecotoxicol Environ Safe 78:9–13

    Article  CAS  Google Scholar 

  • Soares TS, Watanabe RMO, Lemos FJA, Tanaka AS (2011) Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes. Gene 489:70–75

    Article  PubMed  CAS  Google Scholar 

  • Souza TM, Farias DF, Soares BM, Viana MP, Lima GPG, Machado LKA, Morais SM, Carvalho AFU (2011) Toxicity of Brazilian plant seed extracts to two strains of Aedes aegypti (Diptera: Culicidae) and nontarget animals. J Med Entomol 48:846–851

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa JT, Brito MV, Macedo MLR, Uchoa AF, Miranda A, Araujo APU, Silva-Lucca RA, Sampaio MU, Oliva MLV (2010) The defensive functions of plant inhibitors are not restricted to insect enzyme inhibition. Phytochemistry 71:214–220

    Article  PubMed  CAS  Google Scholar 

  • Terra WR, Ferreira C, Bianchi AG (1977) Action pattern, kinetical properties and electrophoretical studies of an alfha-amylase present in midgut homogenates from Rhynchonsciara Americana (Diptera) larvae. Comp Biochem Physiol B Biochem Mol Biol 56:201–209

    Article  CAS  Google Scholar 

  • Vasconcelos PFC (2003) Febre Amarela. Rev Soc Bras Med Trop 36(275–29):2003

    Google Scholar 

  • Vasugi C, Kamalakannan S, Murugan K (2013) Toxicity effect of Delonix elata (yellow gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti. Asian Pac J Trop Dis 3:119–126

    Article  PubMed Central  Google Scholar 

  • Wan-Norafikah O, Nazni WA, Lee HL, Zainol-Ariffin P, Sofian-Azirun M (2010) Permethrin resistance in Aedes aegypti (Linnaeus) collected from Kuala Lumpur, Malaysia. J Asia Pac Entomol 13:175–182

    Article  Google Scholar 

  • Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antivir Res 85:328–345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wirth MC (2010) Mosquito resistance to bacterial larvicidal toxins. Open Toxicol J 3:126–140

    Article  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP

  • World Health Organization (2013) Dengue and severe dengue. Fact Sheet N-117

Download references

Acknowledgments

We are grateful to the team from the Floresta Nacional de Nisia Floresta, Rio Grande do Norte, Brazil, a Federal Conservation Unit managed by the ICMBio—Chico Mendes Unit for Biodiversity Conservation, for donating and identifying the seeds, and to the Federal University of Rio Grande do Norte (UFRN) and National Research Council (CNPQ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Fátima de Freire Melo Ximenes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, P.B.B.M., de Oliveira, J.M., Chagas, J.M. et al. Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti . Parasitol Res 113, 3565–3580 (2014). https://doi.org/10.1007/s00436-014-4022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4022-6

Keywords

Navigation