Skip to main content

Advertisement

Log in

The acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, Argas persicus, infesting laying hens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

An Erratum to this article was published on 17 August 2013

Abstract

The fowl tick, Argas persicus (Oken), is of veterinary importance as a parasite of poultry and wild birds. The antitick efficacy, in vitro and in vivo, of peracetic acid (PAA) and deltamethrin (DMT) was tested separately against A. persicus through the dipping technique. PAA (0.5 %) was highly efficient against soft tick larvae (A. persicus), resulting in 100 % mortality after 2 min. The lethal concentrations LC50 and LC95 were 0.310 and 0.503 %, respectively. The lethal time values LT50 and LT95 were 5.34 and 40.00 min, respectively, after treatment with PAA (0.25 %). Two minutes after exposure to DMT, LC50 and LC95 values were 0.033 and 0.052 % (33.204 and 51.527 mg/L), respectively. The LT50 and LT95 values were 27.03 and 305.46 min, respectively, after treatment with 0.025 % DMT (25 mg/L). After dipping in PAA (0.5 %), the chickens did not show respiratory signs or inflammation on the eyes and/or skin. By contrast, temporary coughing, sneezing, and ocular inflammations without dermatitis were observed in chickens dipped in DMT (0.05 % or 50 mg /L). Seven days posttreatment (PT), the reduction in the percentages of A. persicus infesting laying hens were 99.15 and 63.42 % after dipping in PAA and DMT, respectively. However, complete elimination of the number of ticks occurred after 28 days PT with DMT. PAA inhibits molting effectively (28 %) when compared with that of DMT (52 %). Results indicated that PAA is a more potent and promising acaricide against A. persicus (in vitro and in vivo) than DMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbassy MM, Osman M, Marzouk AS (1993) West Nile virus (Flaviviridae: Flavirus) in experimentally infected Argas ticks (Acari: Argasidae). Am J Trop Med Hyg 48:726–737

    PubMed  CAS  Google Scholar 

  • Abdel-Shafy S, Soliman M (2004) Toxicity of some essential oils on eggs, larvae and females of Boophilus annulatus (Acari, Ixodidae, Amblyommidae) infesting cattle in Egypt. Acarologia XLIV:23–30

    Google Scholar 

  • Abdel-Shafy S, Zayed AA (2002) In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea, Ixodidae). Vet Parasitol 16:89–96

    Article  Google Scholar 

  • Abdu PA (1987) Infectious bursal disease and spirochetosis in pullet chicks. Avian Dis 31(1):204–205

    Article  PubMed  CAS  Google Scholar 

  • AFPMB (2009) Pesticide spill prevention and management. Armed Forces Pest Management Board, Technical Guide No. 15

  • Anderson AJ, Miller CD (2001) Catalase activity and the survival of Pseudomonas putida a root colonizer, upon treatment with peracetic acid. J Microbiol 47:222–228

    CAS  Google Scholar 

  • Anonymous (2010) Deltamethrin. Datasheet, Santa Cruz Biotechnology, sc-24013. Available at datasheets.scbt.com/sc-24013.pdf

  • Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, Iowa

    Book  Google Scholar 

  • Bishopp FC (1942) Poultry mites. US Department of Agriculture, Yearbook of Agriculture 1055

  • Bishopp FC, Wagner RD (1931) Nicotine in the control of ectoparasites of poultry. J Econ Entomol 24:56

    CAS  Google Scholar 

  • Block SS (1991) Peroxygen compounds. In: Block SS (ed) Disinfection, sterilization and prevention. Lea and Febiger, Philadelphia, pp 167–181

    Google Scholar 

  • Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contamin Toxicol 108:133–177

    Article  CAS  Google Scholar 

  • Buriro SN (1983) Relative abundance of different species of bacteria isolated from Argas persicus. Pakistan Vet J 3:126–128

    Google Scholar 

  • Calnek BW, Barnes HJ, Beard CW, Reid WM, Yoder HW Jr (1991) Diseases of poultry, 9th edn. Iowa State University Press, Ames

    Google Scholar 

  • Cetin H, Cilek JE, Oz E, Aydin E, Deveci DO, Yanikoglu A (2009) Comparative efficacy of spinosad with conventional acaricides against hard and soft tick populations from Antalya, Turkey. Vet Parasitol 163:101–104

    Article  PubMed  CAS  Google Scholar 

  • Chaton PF, Ravanel P, Tissut M, Meyran JC (2002) Toxicity and bio accumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites. Ecotoxicol Environ Saf 52:8–12

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Adamu H, Abdissa A, Tolosa T, Gashaw A (2011) Argas persicus Ethiopian soft ticks as disease vectors. 21st European Congress of Clinical Microbiology and Infectious Diseases, Milan, Italy, 7–10 May 2011, Abstract number P868

  • Dubey NK, Shukla R, Kumar A, Singh P, Prakash B (2011) Global scenario on the application of natural products in integrated pest management programmes. In: Dubey NK (ed) Natural products in plant pest management. CAB International, London, pp 1–20

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Dusbábek F, Rupes V, Sbreveimek P, Zahradni’Ckova H (1997) Enhancement of permethrin efficacy in acaricide–attractant mixtures for control of the fowl tick Argas persicus (Acari, Argasidae). Exp Appl Acarol 21:293–305

    Article  Google Scholar 

  • Ercken D, Verelst L, Declerck P, Duvivier L, Damme AV, Ollevier F (2003) Effects of peracetic acid and monochloramine on the inactivation of Naegleria lovaniensis. Water Sci Technol 47:167–171

    PubMed  CAS  Google Scholar 

  • Fernandes FF (2001) Toxicological effects and resistance to pyrethriods in Boophilus microplus from Goias, Brazil. Arq Bras Med Vet Zootec 53:538–543

    Article  Google Scholar 

  • Fernandes FF, Freitas EP, Silva Jr, Silva OR, Silva IG (2001) Toxic effects and in vitro inefficacy of DMT on larvae of Rhipicephalus sanguineus from Goiânia, Goiás, Brazil. Rev Soc Bras Med Trop 34:159–165

    PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge Univerisity Press, Cambridge, p 303

    Google Scholar 

  • Frolov BA (1974) Chemical and biological methods of controlling poultry ectoparasites. Veterinaria Moscow 12:66–68

    Google Scholar 

  • Goethe R, Kunze K (1973) Neuropharmacological investigations on tick paralysis of chickens induced by larvae of Argas (persicargas) walkerae. In: Soulsby EJL (ed) Parasitic zoonoses: clinical and experimental studies. Academic, New York, pp 369–382

  • Gyurov B (1983) Role of Argas persicus in the epidemiology of fowl typhoid. Vet Sbirka 81:22–24

    Google Scholar 

  • Hart BL (1992) Behavioral adaptations to parasites: an ethological approach. J Parasitol 78:256–265

    Article  PubMed  CAS  Google Scholar 

  • Hart BL (1997) Behavioural defence. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 59–77

    Google Scholar 

  • Hassanain MA, El-Garhy MF, Abdel-Ghaffar FA, El-Sharaby A, Abdel-Megeed KN (1997) Biological control studies of soft and hard ticks in Egypt. I. The effect of Bacillus thuringiensis varieties on soft and hard ticks (Ixodidae). Parasitol Res 83:209–213

    Article  PubMed  CAS  Google Scholar 

  • Holten K, Skjelstad B, Aunsmo A, Skjelstad HR (2003) Effect of DetaroxRegAP against infection with Ichthyobodo necator. Norsk Veteriaertidsskrift 115:719–723

    Google Scholar 

  • Hoogstraal H, Wassef HY, Büttiker W (1981) Ticks (Acarina) of Saudi Arabia. Fam. Argasidae, Ixodidae. Fauna Saudi Arab 3:25–110

    Google Scholar 

  • Kassaify ZG, El-Hakim RG, Rayya EG, Shaib HA, Barbour EK (2007) Preliminary study on the efficacy and safety of eight individual and blended disinfectants against poultry and dairy indicator organisms. Vet Ital 43:821–830

    PubMed  Google Scholar 

  • Kayaa GP (1992) Non-chemical agents and factors capable of regulating tick populations in nature: a mini review. Insect Sci Appl 13:587–594

    Google Scholar 

  • Keirans JE, Durden LA (2005) Tick systematics and identification. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne diseases of humans. American Society for Microbiology Press, Washington, pp 123–142

    Google Scholar 

  • Khan LA, Kham MN, Iqbal Z, Qudoos A (2001a) Comparative acaricidal efficacy of cypermethrin, ivermectin, trichlorphon and Azadirachta indica (neem) in layers naturally infested with Argus persicus. Pak J Agric Sci 38(3/4):29–31

    Google Scholar 

  • Khan LA, Khan MN, Iqbal Z, Qudoos A (2001b) Comparative acaricidal efficacy of cypermethrin, ivermectin, trichlorphon and Azadirachta indica (neem) in layers naturally infested with Argus persicus. Pak J Agric Sci 38(3/4):29–31

    Google Scholar 

  • Khater HF (2003) Biocontrol of some insects. Ph.D. thesis, Zagazig University, Benha Branch, Egypt

  • Khater HF (2011) Ecosmart biorational insecticides: alternative insect control strategies. In: Perveen F (ed) Advances in integrated pest management. InTech, Croatia, pp 17–60

    Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3(12):641–656

    Article  Google Scholar 

  • Khater HF, Khater DH (2009) The insecticidal activity of four medicinal plants against the blowfly Lucilia sericata (Diptera: Calliphoridae). Int J Dermatol 48(5):492–497

    Article  PubMed  Google Scholar 

  • Khater HF, Ramadan MY (2007) The acaricidal effects of peracetic acid against Boophilus annulatus and Argas persicus. Acta Sci Vet 35:29–40

    Google Scholar 

  • Khater HF, Shalaby AA (2008) Potential of biologically active plant oils for control mosquito larvae Culex pipiens (Diptera: Culicidae) from an Egyptian locality. Rev Inst Med trop S Paulo 50(2):107–112

    Article  PubMed  Google Scholar 

  • Khater HF, Ramadan MY, El-Madawy RS (2009) Lousicidal, ovicidal, and repellent efficacy of some essential oils against lice and flies infesting water buffaloes in Egypt. Vet Parasitol 164:257–266

    Article  PubMed  CAS  Google Scholar 

  • Khater HF, Hanafy A, Abdel-Mageed AD, Ramadan MY, El-Madawy RS (2011) Control of the myiasis-producing fly, Lucilia sericata, with Egyptian essential oils. Int J Dermatol 50(2):187–194

    Article  PubMed  Google Scholar 

  • Kinsey AA, Durden LA, Oliver Jr (2000) Tick infestation of birds in coastal Georgia and Albama. J Parasitol 86:251–254

    PubMed  CAS  Google Scholar 

  • Kraemer P (1959) Relative efficacy of several materials for control of poultry ectoparasites. J Econ Entomol 52:1195

    CAS  Google Scholar 

  • Kumar A, Mahour K, Gupta VK, Vihan VS (2006) Susceptibility and relative resistance in tick population against cypermethrin in organized farm and field animals. Vet practitioner 7:41–43

    Google Scholar 

  • Leeflang P, Ilemobade AA (1977) Tick borne diseases of domestic animals in northern Nigeria. Trop Anim Health Prod 9:211–218

    Article  PubMed  CAS  Google Scholar 

  • Maillard JY, Hann AC, Beggs TS, Day MK, Hudson RA, Russell AD (1995) Electron-microscopic investigation of the effect of biocides on Pseudomonas aeruginosa PAO bacteriophage F116. J Med Microbiol 42:415–420

    Article  PubMed  CAS  Google Scholar 

  • Massoud AM, Kutkat MA, Abdel Shafy S, El-Khateeb RM, Labib IM (2005) Acaricidal efficacy of Myrrh (Commiphora molmol) on the fowl tick Argas persicus (Acari: Argasidae). J Egyp Soc Parasitol 35(2):667–686

    CAS  Google Scholar 

  • Mehlhorn H, Walldorf V, Klimpel S, Jahn B, Jaeger F, Eschweiler J, Hoffmann B, Beer M (2007) First occurrence of Culicoides obsoletus transmitted bluetongue virus epidemic in Central Europe. Parasitol Res 101:219–228

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schmahl G, D’Haese J, Schumacher B (2008a) Butox® 7.5 pour-on: a deltamethrin treatment of sheep and cattle: pilot study of killing effects on Culicoides species. Parasitol Res 102:515–518

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schmahl G, Schumacher B, D’Haese J, Walldorf V, Klimpel S (2008b) Effects of Bayofly™ on specimens of Culicoides species when incubated in hair taken from the feet of previously treated cattle and sheep. Parasitol Res 102:519–522

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Walldorf V, Klimpel S (2009) Bluetongue diseases in Germany: monitoring of entomological aspects. Parasitol Res 105:321–329

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Al-Rasheid KAS, Abdel-Ghaffar K, Pohle H (2010) Life cycle and attacks of ectoparasites on ruminants during the year in Central Europe: recommendations for treatment with insecticides (e.g. Butox®). Parasitol Res 107:425–431

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schumcher B, Jatzlau A, Abdel-Ghaffar F, Al-Rasheid KAS, Klimpel S, Pohle H (2011) Efficacy of DMT (Butox® 7.5 pour on) against nymphs and adults of ticks (Ixodes ricinus, Rhipicephalus sanguineus) in treated hair of cattle and sheep. Parasitol Res 108(4):963–971

    Article  PubMed  Google Scholar 

  • Møller A, Arriero E, Lobato E, Merino S (2009) A meta-analysis of parasite virulence in nestling birds. Biol Rev Camb Philos Soc 84:567–588

    Article  PubMed  Google Scholar 

  • Montasser AA, Marzouk AS, El-Alfy SH, Baioumy AA (2011) Efficacy of abamectin against the fowl tick, Argas (Persicargas) persicus (Oken, 1818) (Ixodoidea: Argasidae). Parasitol Res 109(4):1113–1123

    Article  PubMed  Google Scholar 

  • Moskey HE, Harwood PD (1941) Method of evaluating the efficacy of anthelmintics. Am J Vet Res 2:55–59

    Google Scholar 

  • Muller P, Raabe G, Horold J, Juretzek U (1988) Action of chronic peracetic acid (wofasteril) administration on the rabbit oral mucosa. Exp Pathol 34:223–228

    Article  PubMed  CAS  Google Scholar 

  • Osborn H (1968) Insects affecting domestic animals, an account of the species of importance in North America with mention of related forms occurring on other animals. U. S. Department Agricultural Bulletin. 5

  • Owen JP, Nelson AC, Clayton DH (2010) Ecological immunology of bird–ectoparasite systems. Trends Parasitol 26:530–539

    Article  PubMed  Google Scholar 

  • Pamo ET, Tendonkeng F, Kana J, Payne VK, Boukila B, Lemoufouet J, Miegoue E, Nanda AS (2005) A study of the acaricidal properties of an essential oil extracted from the leaves of Ageratum houstonianum. Vet Parasitol 128:319–323

    Article  Google Scholar 

  • Pandita NN, Ram S (1990) Control of ectoparasitic infestation in country goats. Small Rumin Res 3:403–412

    Article  Google Scholar 

  • Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-Cruz J, Khasawneh M, Montenieri JA, Maupin GO (2005) Use of novel compounds for pest control, insecticidal and acaricidal activity of essential oil components from heartwood of alaska yellow cedar. J Med Entomol 42:352–358

    Article  PubMed  CAS  Google Scholar 

  • Permin A, Hansen JW (1998) Epidemiology, diagnosis and control of poultry parasites. FAO, Rome, pp 4–56

    Google Scholar 

  • Pourseyed SH, Tavassoli M, Bernousi I, Mardani K (2010) Metarhizium anisopliae (Ascomycota: Hypocreales): an effective alternative to chemical acaricides against different developmental stages of fowl tick Argas persicus (Acari: Argasidae). Vet Parasitol 172(3–4):305–310

    Article  PubMed  CAS  Google Scholar 

  • Radwan WA, Helmy N, Guneidy NA, Mohammed SS (2009) Effect of the juvenile hormone analogue (Admiral) on viability of eggs and postembryonic development of the soft tick Argas persicus (Oken). Egypt Acad J biolog Sci 2(1):37–45

    Google Scholar 

  • Ramadan MY (2009) Acaricidal and immunological Studies opn fowl tick Argas persicus Infecting Commercial Balady Chickens Flock. Third Inter. Sci. Conf., 29 Jan.- 1 Feb./ 2009, Benha and Ras Sudr, Egypt Faculty of Veterinary Medicine, Benha University

  • Ray DE (1991) Pesticides derived from plants and other organisms. In: Hayes WJ Jr, Laws ER (eds) Handbook of pesticide toxicology, vol. 2. Classes of pesticides, chap. 13. Academic, New York, pp 585–592

  • Ray DE (2001) Pyrethroid insecticides: mechanisms of toxicity, systemic poisoning syndromes, paresthesia, and therapy. In: Krieger R, Doull J, Ecobichon D (eds) Handbook of pesticide toxicology: Vol 2: Agents. Academic Press, San Diego, pp 1289–1303

    Chapter  Google Scholar 

  • Roberts LS, Janovy JRJ (2009) Foundation of parasitology, 8th edn. McGraw Hill, New York

    Google Scholar 

  • Rodriguez JL, Riehl LA Jr (1956) Four pesticides tested against the fowl tick infesting turkeys in feed lots. J Econ Entomol 49:713

    CAS  Google Scholar 

  • Rozilawati H, Lee HL, Mohd Masri S, Mohd Noor I, Rosman S (2005) Field bioefficacy of deltamethrin residual spraying against dengue vectors. Biomedicine 22(2):143–148

    CAS  Google Scholar 

  • Salvia ACRD, Teodoro GR, Balducci I, Ito CY, Goncalves De Oliveira SH (2011) Effectiveness of 2 % peracetic acid for the disinfection of gutta-percha cones. Braz. Oral Res 25: Sao Paulo.

  • Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113(2):123–136

    Article  PubMed  CAS  Google Scholar 

  • Shalaby AA, Khater HF (2005) Toxicity of certain solvent extracts of Rosmarinus officinalis against Culex pipiens larvae. J Egypt German Soc Zool 48E:69–80

    Google Scholar 

  • Sheikh N (2011) Health and insecticides in advances in integrated pest management. In: Perveen F (ed) Advances in integrated pest management. InTech, Croatia, pp 143–152

    Google Scholar 

  • Singh A, Srivastava VK (1999) Toxic effect of synthetic pyrethroid permethrin on the enzyme system of the freshwater fish Channa striatus. Chemosphere 39:1951–1956

    Article  PubMed  CAS  Google Scholar 

  • Smith CL (1952) Field tests of insecticides against ectoparasites of poultry. J Econ Entomol 45:748

    CAS  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicol 171:3–59

    Article  CAS  Google Scholar 

  • Soliman AM, Mousa SA, Gad N, Desouky U, Sokkar IM (1988) Rodents and ticks as a reservoir of mycoplasma in poultry farms. Assuit Vet Med J 9:184–190

    Google Scholar 

  • Soni JL (1979) An outbreak of tick paralysis in white leghorn chicks due to Argas persicus. Indian Vet J 56:149–152

    Google Scholar 

  • Stefanov V, Matev I, Balimezov I (1975) Role of ticks of the species Argas persicus in the epizootology of pullorum disease in birds. Vet Med Nauki 12:45–50

    PubMed  CAS  Google Scholar 

  • Tain QY, Guan Y (1989) Sensitivity of Argas persicus to 4 acaricides and the use of DMT dip to kill A. persicus on chicken. Chinese J Vet Med 15:24–25

    Google Scholar 

  • Uspensky I, Uspensky II (2006) Potential risk of pathogen transmission by acaricide-poisoned ticks. Intern J Microbiol 296:217–224

    Article  Google Scholar 

  • Van Den Bos RHC, Curtis RJ (2002) The use of a 4 % (w/w) deltamethrin collar (Scalibor ProtectorBand) in the extended control of ticks on dogs. Exp Appl Acarol 28(1–4):297–303

    PubMed  Google Scholar 

  • Waite JL, Henry AR, Clayton DH (2012). How effective is preening against mobile ectoparasites? An experimental test with pigeons and hippoboscid flies. Intern J Parasitol, in press.

  • White WH, Bauer SM, Zhao X, Gutierrez JA, Smith CK (2004) Comparison of in vitro and in vivo ectoparasiticide activity of experimental benzimidazole-Carbamate with Permethrin and Amitraz. J Med Entomol 42:207–211

    Article  Google Scholar 

  • WHO (World Health Organization) (1990) Environmental Health Criteria-97. International programme of chemical safety. In: DMT. Library cataloguing in publication data. Genevea.

  • Wikel SK (1996) The immunology of host–ectoparasitic arthropod relationships. CAB International, Guildford

    Google Scholar 

  • Wutzler P, Sauerbrei A (2004) Viricidal Activity of the new disinfectant monoperacetic acid. Lett App Microbiol 39:194–198

    Article  CAS  Google Scholar 

  • Wutzler P, Mucke H, Battke H, Goebel P, Schreiber D (1987) Animal experiment studies of the effect of peracetic acid on bladder urothelium. Z Urol Nephrologie 80:105–110

    CAS  Google Scholar 

  • You YG, Youn-Hua C, Guo-Run S, Wanhai C, Jian-Guo C (2002) Trails of the lethal efficacy of phenol and other pesticides against soil mites. Chin J Vet Med 28:14–15

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Azza A. Moustafa, Research Institute of Medical Entomology, Egypt, and Prof. Dr. Ashraf A. El-Koumy, Pharmacology Department, Faculty of Veterinary Medicine, Benha University, Egypt, for their support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanem F. Khater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khater, H.F., Seddiek, S.A., El-Shorbagy, M.M. et al. The acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, Argas persicus, infesting laying hens. Parasitol Res 112, 259–269 (2013). https://doi.org/10.1007/s00436-012-3133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3133-1

Keywords

Navigation