Skip to main content

Advertisement

Log in

Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Gastric cryptosporidia only inhabit the glandular part of the stomach of all age categories of their hosts and can cause chronic life-long infections independent of a host's immune status. The immune response in the stomach mucosa during the primary infection and re-infection with Cryptosporidium muris (TS03 and CB03) in immunocompetent BALB/c mice was characterized using flow cytometry analysis and measurement of IFN-γ and IL10 by enzyme-linked immunosorbent assays (ELISA). Significantly, elevated migration of T lymphocytes (more than 1,000-fold), especially CD8+ T lymphocytes, to the stomach mucosa occurred during primary infection and persisted for more than 2 months after its resolution. The ex vivo cultures of splenocytes revealed very low levels of IFN-γ production during the course of the primary infection (0.5 ng/ml), whereas in the following re-exposure to the parasites, the concentration of IFN-γ rapidly increased 22-fold. Although the two parasite strains that were tested were genetically distinct, they yielded similar results in the induction of cellular immune responses, suggesting that these patterns are not unique to a single parasite strain. These results imply that the CD8+ T lymphocytes are involved in the immune response to gastric cryptosporidiosis and could play an important role in the elimination of C. muris infection in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre SA, Mason PH, Perryman LE (1994) Susceptibility of major histocompatibility complex (MHC) class I- and MHC class II-deficient mice to Cryptosporidium parvum infection. Infect Immun 62:697–699

    CAS  PubMed  Google Scholar 

  • Arrowood MJ, Donaldson K (1996) Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients. J Eukaryot Microbiol 43:89S

    Article  CAS  PubMed  Google Scholar 

  • Born WK, Reardon CL, O'Brien RL (2006) The function of gammadelta T cells in innate immunity. Curr Opin Immunol 18:31–38

    Article  CAS  PubMed  Google Scholar 

  • Culshaw RJ, Bancroft GJ, McDonald V (1997) Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infect Immun 65:3074–3079

    CAS  PubMed  Google Scholar 

  • Eichelberger MC, Suresh P, Rehg JE (2000) Protection from Cryptosporidium parvum infection by gammadelta T cells in mice that lack alphabeta T cells. Comp Med 50:270–276

    CAS  PubMed  Google Scholar 

  • Fayer R, Ungar BL (1986) Cryptosporidium spp. and cryptosporidiosis. Microbiol Rev 50:458–483

    CAS  PubMed  Google Scholar 

  • Heine J, Moon HW, Woodmansee DB (1984) Persistent cryptosporidiosis infection in congenitally athymic (nude) mice. Infect Immun 43:856–859

    CAS  PubMed  Google Scholar 

  • Jiang J, Alderisio KA, Xiao L (2005) Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol 71:4446–4454

    Article  CAS  PubMed  Google Scholar 

  • Kearsey JA, Stadnyk AW (1996) Isolation and characterization of highly purified rat intestinal intraepithelial lymphocytes. J Immunol Methods 194:35

    Article  CAS  PubMed  Google Scholar 

  • Kváč M, Květoňová D, Salát J, Ditrich O (2007) Viability staining and animal infectivity of Cryptosporidium andersoni oocysts after long-term storage. Parasitol Res 100:213–217

    Article  PubMed  Google Scholar 

  • Kváč M, Sak B, Květoňová D, Ditrich O, Hofmannová L, Modrý D, Vítovec J, Xiao L (2008a) Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Vet Parasitol 153:363–367

    Article  PubMed  Google Scholar 

  • Kváč M, Sak B, Salát J, Květoňová D (2008b) The role of CD8+ T-lymphocytes during gastric Cryptosporidium muris TS03 infection in mice. Abstr PO65, 10th Int Wkshps Opportun Protists, Boston, MA, USA

  • Kváč M, Sak B, Květoňová D, Secor WE (2009) Infectivity of gastric and intestinal Cryptosporidium species in immunocompetent Mongolian gerbils (Meriones unguiculatus). Vet Parasitol 163:33–38

    Article  PubMed  Google Scholar 

  • Leav BA, Yoshida M, Rogers K, Cohen S, Godiwala N, Blumberg RS, Ward H (2005) An early intestinal mucosal source of gamma interferon is associated with resistance to and control of Cryptosporidium parvum infection in mice. Infect Immun 73:8425–8428

    Article  CAS  PubMed  Google Scholar 

  • McDonald V (1999) Gut intraepithelial lymphocytes and immunity to Coccidia. Parasitol Today 15:483–487

    Article  CAS  PubMed  Google Scholar 

  • McDonald V, Bancroft GJ (1993) Cryptosporidium muris in adult mice: a model for investigation of the immunology of mammalian cryptosporidiosis. In: Bartha JR, Fernando MA (eds) Proceedings of the VIth International Coccidiosis Conference. University of Guelph, Guelph, p 133

    Google Scholar 

  • McDonald V, Deer R, Uni S, Iseki M, Bancroft GJ (1992) Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infect Immun 60:3325–3331

    CAS  PubMed  Google Scholar 

  • McDonald V, Robinson HA, Kelly JP, Bancroft GJ (1994) Cryptosporidium muris in adult mice: adoptive transfer of immunity and protective roles of CD4 versus CD8 cells. Infect Immun 62:2289–2294

    CAS  PubMed  Google Scholar 

  • McDonald V, Robinson HA, Kelly JP, Bancroft GJ (1996) Immunity to Cryptosporidium muris infection in mice is expressed through gut CD4+ intraepithelial lymphocytes. Infect Immun 64:2556–2562

    CAS  PubMed  Google Scholar 

  • Mead JR, Arrowood MJ, Sidwell RW, Healey MC (1991) Chronic Cryptosporidium parvum infections in congenitally immunodeficient SCID and nude mice. J Infect Dis 163:1297–1304

    CAS  PubMed  Google Scholar 

  • Miláček P, Vítovec J (1985) Differential staining of Cryptosporidia by aniline-carbol-methyl-violet and tartrazin in smears from faeces and scrapings of intestinal mucosa. Folia Parasitol 32:50

    PubMed  Google Scholar 

  • Miller TA, Schaefer FW (2007a) Characterization of a Cryptosporidium muris infection and reinfection in CF-1 mice. Vet Parasitol 144:208–221

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, Schaefer FW (2007b) Methylprednisolone acetate immune suppression produces differing effects on Cryptosporidium muris oocyst production depending on when administered. Vet Parasitol 149:77–84

    Article  CAS  PubMed  Google Scholar 

  • Pantenburg B, Dann SM, Wang HC, Robinson P, Castellanos-Gonzalez A, Lewis DE, White AC (2008) Intestinal immune response to human Cryptosporidium sp. infection. Infect Immun 76:23–29

    Article  CAS  PubMed  Google Scholar 

  • Rhee JK, Yook SY, Park BK (1995) Oocyst production and immunogenicity of Cryptosporidium muris (strain MCR) in mice. Korean J Parasitol 33:377–382

    Article  CAS  PubMed  Google Scholar 

  • Riggs MW (2002) Recent advances in cryptosporidiosis: the immune response. Microbes Infect 4:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Theodos CM (1998) Innate and cell-mediated immune responses to Cryptosporidium parvum. Adv Parasitol 40:121–149

    Article  Google Scholar 

  • Tilley M, McDonald V, Bancroft GJ (1995) Resolution of cryptosporidial infection in mice correlates with parasite-specific lymphocyte proliferation associated with both Th1 and Th2 cytokine secretion. Parasite Immunol 17:459–464

    Article  CAS  PubMed  Google Scholar 

  • Todd D, Singh AJ, Greiner DL, Mordes JP, Rosini AA, Bortell R (1999) A new isolation method for rat intraepithelial lymphocytes. J Immunol Methods 224:111–127

    Article  CAS  PubMed  Google Scholar 

  • Ungar BL, Burris JA, Quinn CA, Finkelman FD (1990) New mouse models for chronic Cryptosporidium infection in immunodeficient hosts. Infect Immun 58:961–969

    CAS  PubMed  Google Scholar 

  • Ungar BL, Kao TC, Burris JA, Finkelman FD (1991) Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T lymphocytes in protective immunity. J Immunol 147:1014–1022

    CAS  PubMed  Google Scholar 

  • Xiao L (2009) Overview of Cryptosporidium presentations at the 10th International Workshops on Opportunistic Protists. Eukaryot Cell 8:429–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Academy of Sciences of the Czech Republic (project no. KJB500960701) and the Institute of Parasitology, Academy of Sciences of the Czech Republic (Z60220518). The findings and conclusions in this publication are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohumil Sak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalovecká, M., Sak, B., Kváč, M. et al. Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitol Res 106, 1159–1166 (2010). https://doi.org/10.1007/s00436-010-1785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1785-2

Keywords

Navigation