Skip to main content
Log in

Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Leishmania (Viannia) braziliensis is the major causative agent of American tegumentary leishmaniasis, a disease that has a wide geographical distribution and is a severe public health problem. The cysteine proteinase B (CPB) from Leishmania spp. represents an important virulence factor. In this study, we characterized and localized cysteine proteinases in L. (V.) braziliensis promastigotes. By a combination of triton X-114 extraction, concanavalin A-affinity, and ion exchange chromatographies, we obtained an enriched fraction of hydrophobic proteins rich in mannose residues. This fraction contained two proteinases of 63 and 43 kDa, which were recognized by a CPB antiserum, and were partially sensitive to E-64 in enzymatic assays with the peptide Glu-Phe-Leu. In confocal microscopy, the CPB homologues localized in the peripheral region of the parasite. This data together with direct agglutination and flow cytometry assays suggest a surface localization of the CPB homologues. The incubation of intact promastigotes with phospholipase C reduced the number of CPB-positive cells, while anti-cross-reacting determinant and anti-CPB antisera recognized two polypeptides (63 and 43 kDa) derived from phospholipase C treatment, suggesting that some CPB isoforms may be glycosylphosphatidylinositol-anchored. Collectively, our results suggest the presence of CPB homologues in L. braziliensis surface and highlight the need for further studies on L. braziliensis cysteine proteinases, which require enrichment methods for enzymatic detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander J, Russel DG (1992) The interaction of Leishmania species with macrophages. Adv Parasitol 31:175–254

    Article  CAS  PubMed  Google Scholar 

  • Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112:2993–3002

    CAS  PubMed  Google Scholar 

  • Alves CR, Marzochi MC, Giovanni-de-Simone S (1993) Heterogeneity of cysteine proteinases in Leishmania braziliensis and Leishmania major. Braz J Med Biol Res 26:167–171

    CAS  PubMed  Google Scholar 

  • Alves CR, Pontes de Carvalho LC, Souza ALA, Giovanni-De-Simone S (2001) A strategy for the identification of T-cell epitopes on Leishmania cysteine proteinases. Cytobios 104:33–41

    CAS  PubMed  Google Scholar 

  • Alves CR, Corte-Real S, Bourguignon SC, Chaves CS, Saraiva EM (2005) Leishmania amazonensis: early proteinase activities during promastigote-amastigote differentiation in vitro. Exp Parasitol 109:38–48

    Article  CAS  PubMed  Google Scholar 

  • Bates PA, Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med 4:601–609

    Article  CAS  PubMed  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    CAS  PubMed  Google Scholar 

  • Branquinha MH, Vermelho AB, Goldenberg S, Bonaldo MC (1995) Ubiquity of cysteine- and metalloproteinase activities in a wide range of trypanosomatids. J Eukaryot Microbiol 43:131–135

    Article  Google Scholar 

  • Brooks DR, Tetley L, Coombs GH, Mottram JC (2000) Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 113:4035–4041

    CAS  PubMed  Google Scholar 

  • Cuervo P, Saboia-Vahia L, Costa Silva-Filho F, Fernandes DE, Cupolillo E, de Jesus JB (2006) A zymographic study of metalloprotease activities in extracts and extracellular secretions of Leishmania (Viannia) braziliensis strains. Parasitology 132:177–185

    Article  CAS  PubMed  Google Scholar 

  • d'Avila-Levy CM, Araujo FM, Vermelho AB, Soares RM, Santos AL, Branquinha MH (2005) Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 130:413–420

    Article  PubMed  Google Scholar 

  • de Araújo Soares RM, dos Santos AL, Bonaldo MC, de Andrade AF, Alviano CS, Angluster J, Goldenberg S (2003) Leishmania (Leishmania) amazonensis: differential expression of proteinases and cell-surface polypeptides in avirulent and virulent promastigotes. Exp Parasitol 104:104–112

    Article  PubMed  Google Scholar 

  • Denise H, Poot J, Jiménez M, Ambit A, Herrmann DC, Vermeulen AN, Coombs GH, Mottram JC (2006) Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BMC Mol Biol 7:42

    Article  PubMed  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Duboise SM, Vannier-Santos MA, Costa-Pinto D, Rivas L, Pan AA, Traub-Cseko Y, De Souza W, McMahon-Pratt D (1994) The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Mol Biochem Parasitol 68:119–132

    Article  CAS  PubMed  Google Scholar 

  • Dzandu JK, Johnson JF, Wise GE (1988) Sodium dodecyl sulfate-gel electrophoresis: staining of polypeptides using heaving metal salts. Anal Biochem 174:157–167

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112:2799–2809

    CAS  PubMed  Google Scholar 

  • Filippova I, Yu Lysogorskaya EN, Oksenoit ES, Rudenskaya GN, Stepanov VM (1984) L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide–a chromogenic substrate for thiol proteinase assay. Anal Biochem 143:293–297

    Article  CAS  PubMed  Google Scholar 

  • Frommel TO, Button LL, Fujikura Y, McMaster WR (1990) The major surface glycoprotein (GP63) is present in both life stages of Leishmania. Mol Biochem Parasitol 38:25–32

    Article  CAS  PubMed  Google Scholar 

  • Goh SL, Goh LL, Sim TS (2005) Cysteine protease falcipain 1 in Plasmodium falciparum is biochemically distinct from its isozymes. Parasitol Res 97:295–301

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AM, Nehme NS, Morel CM (1990) An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels. Mem Inst Oswaldo Cruz 85:101–106

    Article  PubMed  Google Scholar 

  • Harrach T, Eckert K, Maurer HR, Machleidt I, Machleidt W, Nuck R (1998) Isolation and characterization of two forms of an acidic bromelain stem proteinase. J Protein Chem 17:351–361

    Article  CAS  PubMed  Google Scholar 

  • Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  CAS  PubMed  Google Scholar 

  • Ilgoutz SC, McConville MJ (2001) Function and assembly of the Leishmania surface coat. Int J Parasitol 31:899–908

    Article  CAS  PubMed  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GJ, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco MF, Loayza-Muro R, Clark D, Núñez R, Zavaleta AI, Jimenez M, Meldal M, Coombs GH, Mottram JC, Izidoro M, Juliano MA, Juliano L, Arévalo J (2008) Expression and substrate specificity of a recombinant cysteine proteinase B of Leishmania braziliensis. Mol Biochem Parasitol 161:91–100

    Article  CAS  PubMed  Google Scholar 

  • Lecaille F, Kaleta J, Bromme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488

    Article  CAS  PubMed  Google Scholar 

  • Livio M, Bertoni MP, De Gaetano G, Donati MB (1978) Effect of bromelain on fibrinogen level, prothrombin complex factors and platelet aggregation in Prostaglandin and in the rat. Drugs Exp Clin Res 4:49–53

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154

    Article  CAS  PubMed  Google Scholar 

  • Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Mullins C, Bonifacino JS (2001) The molecular machinery for lysosome biogenesis. Bioessays 23:333–343

    Article  CAS  PubMed  Google Scholar 

  • Nicolle C (1908) Nouvelles acquisition sur le Kala-azar culture: inoculation au chien; etiologie – C. R. Hedd. Sci Acad Sci 146:498–499

    Google Scholar 

  • Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305

    Article  CAS  PubMed  Google Scholar 

  • Pays E, Nolan DP (1998) Expression and function of surface proteins in Trypanosoma brucei. Mol Biochem Parasitol 91:3–36

    Article  CAS  PubMed  Google Scholar 

  • Pral EM, da Moitinho ML, Balanco JM, Teixeira VR, Milder RV, Alfieri SC (2003) Growth phase and medium pH modulate the expression of proteinase activities and the development of megasomes in axenically cultivated Leishmania (Leishmania) amazonensis amastigote-like organisms. J Parasitol 89:35–43

    Article  CAS  PubMed  Google Scholar 

  • Pupkis MF, Tetley L, Coombs GH (1986) Leishmania mexicana: amastigote hydrolases in unusual lysosomes. Exp Parasitol 62:29–39

    Article  CAS  PubMed  Google Scholar 

  • Rafati S, Salmanian AH, Hashemi K, Schaff C, Belli S, Fasel N (2001) Identification of Leishmania major cysteine proteinases as targets of the immune response in humans. Mol Biochem Parasitol 113:35–43

    Article  CAS  PubMed  Google Scholar 

  • Rangel EF, Lainson R (2003) Flebotomíneos do Brasil. Fiocruz, Rio de Janeiro

    Google Scholar 

  • Robertson CD, Coombs GH (1990) Characterisation of three groups of cysteine proteinases in the amastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol 42:269–276

    Article  CAS  PubMed  Google Scholar 

  • Sajid M, McKerrow J (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  CAS  PubMed  Google Scholar 

  • Somanna A, Mundodi V, Gedamu L (2002) Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 277:25305–25312

    Article  CAS  PubMed  Google Scholar 

  • Souza AE, Waugh S, Coombs GH, Mottram J (1992) Characterization of a multi-copy gene for a major stage-specific cysteine proteinase of Leishmania mexicana. FEBS Lett 311:124–127

    Article  CAS  PubMed  Google Scholar 

  • Taussig SJ (1980) The mechanism of the physiological action of bromelain. Med Hypothesis 6:99–104

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Williams RA, Tetley L, Mottram JC, Coombs GH (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 61:655–674

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132:1–16

    Article  CAS  PubMed  Google Scholar 

  • Zamze SE, Ferguson MA, Collins R, Dwek RA, Rademacher TW (1988) Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. Eur J Biochem 176:527–534

    Article  CAS  PubMed  Google Scholar 

  • Zuckerman A (1975) Current status of the immunology of blood and tissue Protozoa, I. Leishmania. Exp Parasitol 38:370–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brazilian agencies: MCT/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), PAPES/CNPq (Programa Estratégico de Apioo à Pesquisa em Saúde/CNPq) and FIOCRUZ (Fundação Oswaldo Cruz). C.M.D.L and C.R.A. are CNPq research fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebello, K.M., Côrtes, L.M.C., Pereira, B.A.S. et al. Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis . Parasitol Res 106, 95–104 (2009). https://doi.org/10.1007/s00436-009-1632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1632-5

Keywords

Navigation