Skip to main content
Log in

Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Carbohydrates are implicated in many of the invasive and adhesive interactions that occur between Plasmodium falciparum malaria parasites and human host cells, including invasion of sporozoites into hepatocytes, entry of merozoites into new host erythrocytes during asexual blood-stage replication, adhesion of infected erythrocytes to uninfected erythrocytes (rosetting) and to a number of host endothelial receptors including ICAM-1, CD36 and chondroitin-4-sulphate. In addition to increasing our understanding of host–parasite interactions, the investigation of carbohydrates with differing levels and patterns of sulphation as inhibitors may contribute to the development of novel therapeutics targeting malaria. Here we show that three polysaccharides derived from seaweed (carrageenans) with differing sulphation levels and patterns can inhibit the in vitro erythrocytic invasion and growth of both drug sensitive and drug resistant P. falciparum lines and the adhesion of parasitized erythrocytes to the human glycoprotein CD36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrews KT, Walduck A et al (2000) Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int J Parasitol 30(6):761–768

    Article  PubMed  Google Scholar 

  • Andrews KT, Klatt N, Adams Y, Mischnick P, Schwatrz-Albiez R (2005) Inhibition of chondroitin-4-sulfate-specific adhesion of Plasmodium falciparum infected erythrocytes by polysaccharides. Infect Immun 73(7):4288–4294

    Article  PubMed  Google Scholar 

  • Baird JK (2005) Effectiveness of antimalarial drugs. N Engl J Med 352(15):1565–1577

    Article  PubMed  Google Scholar 

  • Barnwell JW, Asch AS, Nachman RL, Yamaya M, Aikawa M, Ingravello P (1989) A human 88-kDa glycoprotien (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected Eryhtrocytes. J Clin Invest 84:765–772

    PubMed  Google Scholar 

  • Beeson JG, Chai W et al (1998). Inhibition of binding of malaria-infected erythrocytes by a tetradecasaccharide fraction from chondroitin sulfate A. Infect Immun 66(7):3397–3402

    PubMed  Google Scholar 

  • Beeson J, Rogerson S et al (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6:86–90

    Article  PubMed  Google Scholar 

  • Beg M, Khan R et al (2002) Cerebral involvement in benign tertian malaria. Am J Trop Med Hyg 67(3):230–232

    PubMed  Google Scholar 

  • Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K (1989) Intracellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341:57–59

    Article  PubMed  Google Scholar 

  • Butcher GA, Parish CR et al (1988) Inhibition of growth in vitro of Plasmodium falciparum by complex polysaccharides. Trans R Soc Trop Med Hyg 82(4):558–559

    Article  PubMed  Google Scholar 

  • Carlucci MJ, Ciancia M et al (1999) Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Res 43(2):93–102

    Article  PubMed  Google Scholar 

  • Cerami C, Frevert U et al (1992). The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70(6):1021–1033

    Article  PubMed  Google Scholar 

  • Clark DL, Su S et al (1997) Saccharide anions as inhibitors of the malaria parasite. Glycoconj J 14(4):473–479

    Article  PubMed  Google Scholar 

  • Costa FTM, Fusaï T, Parzy D, Sterkers Y, Torrentino M, Lekana Douki J-B, Traoré B, Petres S, Scherf A, Gysin J (2003). Immunization with recombinant duffy binding-like-γ-3 induces pan-reactive and adhesion-blocking antibodies against placental chondroitin sulfate A binding Plasmodium falciparum parasites. J Infect Dis 188:153–164

    Article  PubMed  Google Scholar 

  • Duraisingh MT, Maier AG et al (2003) Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. PNAS 100(8):4796–4801

    Article  PubMed  Google Scholar 

  • Frevert U, Sinnis P et al (1993) Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med 177(5):1287–1298

    Article  PubMed  Google Scholar 

  • Fried M, Duffy P (1996) Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–1504

    PubMed  Google Scholar 

  • Fried M, Nosten F et al (1998) Maternal antibodies block malaria. Nature 395:851–852

    Article  PubMed  Google Scholar 

  • Girond S, Crance JM et al (1991) Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol 142(4):261–270

    Article  PubMed  Google Scholar 

  • Gysin J, Pouvelle B et al (1999) Ex vivo desequestration of Plasmodium falciparum-infected erythrocytes from human placenta by chondroitin sulfate A. Infect Immun 67:6596–6602

    PubMed  Google Scholar 

  • Huber W, KJ (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Tropica 55(4):257–261

    Article  PubMed  Google Scholar 

  • Lambros A, VP (1979) Synchronisation of Plasmodium falciparum stages in culture. J Parasitol 65(3):418–420

    PubMed  Google Scholar 

  • Jensen JB (1978) Concentration from continuous culture of erythrocytes infected with trophozoites and schizonts of Plasmodium falciparum. Am J Trop Med Hyg 27(6):1274–1276

    PubMed  Google Scholar 

  • McGilvray ID, Serghides L et al (2000) Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96(9):3231–3240

    PubMed  Google Scholar 

  • Newbold C, WP, Black G, Berendt A, Craig A, Snow B, Msobo M, Peshu N, Marsh K (1997) Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop med Hyg 57(4):389–398

    PubMed  Google Scholar 

  • Nussenzweig V, Nussenzweig RS (1985) Circumsporozoite proteins of malaria parasites. Cell 42(2):401–403

    Article  PubMed  Google Scholar 

  • Ockenhouse CF, Barbosa A et al (2001). Sialic acid-dependent binding of baculovirus-expressed recombinant antigens from Plasmodium falciparum EBA-175 to Glycophorin A. Mol Biochem Parasitol 113(1):9–21

    Article  PubMed  Google Scholar 

  • Ockenhouse C, Tegoshi T et al (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 176(4):1183–1189

    Article  PubMed  Google Scholar 

  • Oquendo P, Hundt E et al (1989) CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 58(1):95–101

    Article  PubMed  Google Scholar 

  • Pancake S, Holt G et al (1992) Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates. J Cell Biol 117(6):1351–1357

    Article  PubMed  Google Scholar 

  • Rogerson S, Chaiyaroj S et al (1995) Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes. J Exp Med 182:15–20

    Article  PubMed  Google Scholar 

  • Sharma YD (1991) Knobs, knob proteins and cytoadherence in falciparum malaria. Int J Biochem Cell Biol 23(9):775–789

    Google Scholar 

  • Trager WJJ (1976) Human malaria parasites in continuous culture. Science 193:673–675

    PubMed  Google Scholar 

  • Utt M and Wadstrom T (1997) Identification of heparan sulphate binding surface proteins of Helicobacter pylori: inhibition of heparan sulphate binding with sulphated carbohydrate polymers. J Med Microbiol 46(7):541–546

    PubMed  Google Scholar 

  • Walliker DQI, Wellems TE, McCutchan TF, Szarfman A, London WT, Corcoran LM, Burkot TR, Carter R (1987) Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236(4809):1661–1666

    PubMed  Google Scholar 

  • Wellems TE, Oduola AMJ, Fenton B, Desjardins R, Panton LJ, do Rosario VE (1988) Chromosome size variation occurs in cloned Plasmodium falciparum on in vitro cultivation. Rev Bras Genet 11:813–825

    Google Scholar 

  • Xiao L, Yang C et al (1996) Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes. Infect Immun 64(4):1373–1378

    PubMed  Google Scholar 

  • Ying P, Shakibaei M et al (1997) The malaria circumsporozoite protein: interaction of the conserved regions I and II-plus with heparin-like oligosaccharides in heparan sulfate. Exp Parasitol 85(2):168–182

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nirmala Pandeya for assistance with the statistical analysis and the Brisbane Red Cross Blood Service for supplying blood and sera. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) SFB 544 “Control of Tropical infectious Diseases”. Yvonne Adams was partially funded by Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine T. Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, Y., Smith, S.L., Schwartz-Albiez, R. et al. Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36. Parasitol Res 97, 290–294 (2005). https://doi.org/10.1007/s00436-005-1426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-1426-3

Keywords