Skip to main content
Log in

Larval convergence in a colonial tunicate: the organization of the sarcotubular complex in Ecteinascidia turbinata (Perophoridae, Phlebobranchiata, Tunicata, Chordata)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2009

Abstract

Ecteinascidia turbinata is a colonial ascidian that as an adult shares characters with phlebobranch ascidians, whereas the larvae are similar to aplousobranch ascidian larvae. The sarcotubular complex consists of invaginations of the sarcolemma that contact the sarcoplasmatic reticulum via dyads or triads. If present, the invaginations of the sarcolemma in tunicates have been characterized as laminar or tubular. We comparatively investigated the sarcotubular complex of E. turbinata and seven other tunicate species using 3D-reconstruction techniques based on electron micrographs of serial sections. The mononucleate muscle cells in E. turbinata possess intermediate and close junctions and contain several layers of peripheral myofibrillae. The myofibrillae are surrounded by continuous cisternae of the sarcoplasmic reticulum that forms interconnected rings around the z-bands. The invaginations of the sarcolemma are laminar, contacting the sarcoplasamatic reticulum at the height of the z-bands via dyads and triads. We present a clear definition of character states encountered in Tunicata: laminar invaginations are characterized by a width to length ratio of smaller than 1:20, tubular invagination by a width to length ratio of larger than 1:10. Laminar invaginations are found in stolidobranch ascidians and E. turbinata. Tubular invaginations are present in aplousobranch ascidians and appendicularians. This character state distribution across taxa supports the hypothesis that E. turbinata should be included in Phlebobranchiata as suggested by adult characters and that the larval similarities with Aplousobranchiata arose by convergent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berrill NJ (1936) Studies in tunicate development. Part V. The evolution and classification of ascidians. Philos Trans R Soc Lond 226:43–70. doi:10.1098/rstb.1936.0002

    Article  Google Scholar 

  • Bone Q, Ryan KP (1975) On the presence of a transverse system in tunicate muscle. Am Zool 56:271–277

    Google Scholar 

  • Bone Q, Flood PR, Mackie GO, Singla CL (1977) On the organization of the sarcotubular system in the caudal muscle cells of larvaceans (Tunicata). Am Zool 58:187–196

    Google Scholar 

  • Burighel P, Cloney RA (1997) Urochordata: Ascidiacea. In: Harrison FW, Ruppert EE, Microscopic anatomy of invertebrates, Vol. 15. Hemichordata, Chaetognatha, and the invertebrate chordates. Wiley-Liss, New York, pp 221–347

  • Burighel P, Nunzi GM, Schiaffino S (1977) A comparative study of the organization of the sarcotubular system in ascidian muscle. J Morphol 153:205–224. doi:10.1002/jmor.1051530204

    Article  PubMed  CAS  Google Scholar 

  • Cameron CB, Garey JR, Swall BJ (2000) Evolutionn of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474. doi:10.1073/pnas.97.9.4469

    Article  PubMed  CAS  Google Scholar 

  • Castellani C, Camatini M, Donin LL (1972) Aspetti ultrastrutturali dell muscolatura di ascidia. 1st Lombardo Rend Sci 106:59–72

  • Cavey MJ, Cloney RA (1972) Fine structure and differentiation of ascidian muscle. I. Differentiated caudal musculature of Distaplia occidentalis tadpoles. J Morphol 138:349–374. doi:10.1002/jmor.1051380304

    Article  PubMed  CAS  Google Scholar 

  • Cavey MJ, Cloney RA (1973) Differentiation of the complex sarcoplasmic reticulum in caudal muscle cells of an ascidian tadpole larva. Am Zool 13:1323

    Google Scholar 

  • Cavey MJ, Cloney RA (1974) Fine structure and differentiation of ascidian muscle. II. Morphometrics and differentiation of the caudal muscle cells of Distaplia occidentalis tadpoles. J Morphol 144:23–70. doi:10.1002/jmor.1051440104

    Article  PubMed  CAS  Google Scholar 

  • Cavey MJ, Cloney RA (1976) Ultrastructure and differentiation of ascidian muscle. I. Caudal musculature of the larva of Diplosoma macdonaldi. Cell Tissue Res 174:289–313. doi:10.1007/BF00220677

    Article  PubMed  CAS  Google Scholar 

  • Cavey MJ, Strecker HD (1985) Ultrastructure of the caudal muscle cells in the larva of a polyclinid ascidian. Can J Zool 63:1410–1419

    Article  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167. doi:10.1126/science.1080049

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968. doi:10.1038/nature04336

    Article  PubMed  CAS  Google Scholar 

  • Garstang W (1928) The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. Q J Microsc Sci 72:51–187

    Google Scholar 

  • Hernández-Zanuy A, García-Cagide A, Esquivel M, Blanco A (2000) Reproducción y desarrollo de Ecteinascidia turbinata (Ascidiacea: Perophoridae) en Cuba. Rev Biol Trop 48:193–199

    Google Scholar 

  • Kott P (1985) The Australian Ascidiacea. Part I, Phlebobranchiata and Stolidobranchiata. Mem Queensl Mus 23:1–440

    Google Scholar 

  • Kott P (1990) The Australian Ascidiacea. Part II, Aplousobranchiata (1). Mem Queensl Mus 29:1–298

    Google Scholar 

  • Martonosi AN (2000) The development of sarcoplasmic reticulum. Harwood Academic Publishers, Amsterdam, p 632

    Google Scholar 

  • Martonosi AN, Pikula S (2003) The network of calcium regulation in muscle. A Biochim Pol 50:1–30

    CAS  Google Scholar 

  • Monniot C, Monniot F (1972) Clé mondiale des genres d’ascidies. Arch Zool Exp Gén 113:311–367

    Google Scholar 

  • Nielsen C (1997) Tail evolution. Science 277:1422. doi:10.1126/science.277.5331.1421b

    Article  CAS  Google Scholar 

  • Quinn KE, Castellani L, Ondrias K, Ehrlich BE (1998) Characterization of the ryanodine receptor/channel of invertebrate muscle. Am J Physiol Regul Integr Comp Physiol 274:494–502

    Google Scholar 

  • Seeliger O (1885) Die Entwicklungsgeschichte der socialen Ascidien. Jenaische Zeitschr Naturw 18:45–120

    Google Scholar 

  • Stach T (2005) Comparison of the serotonergic nervous system among Tunicata: implications for its evolution within Chordata. ODE 5:14–25

    Google Scholar 

  • Stach T (2007) Ontogeny of the appendicularian Oikopleura dioica Fol, 1872 reveals characters similar to ascidian larvae with sessile adults. Zoomorphology 126:203–214. doi:10.1007/s00435-007-0041-5

    Article  Google Scholar 

  • Stach T, Turbeville JM (2002) Phylogeny of Tunicata inferred from molecular and morphological characters. Mol Phylogenet Evol 25:408–428. doi:10.1016/S1055-7903(02)00305-6

    Article  PubMed  CAS  Google Scholar 

  • Stach T, Winter J, Bouquet J-M, Chourrout D, Schnabel R (2008) Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci USA 105:7229–7234. doi:10.1073/pnas.0710196105

    Article  PubMed  CAS  Google Scholar 

  • Swalla BJ, Jeffery WR (1996) Requirement of the Manx gene for expression of chordate features in a tailless ascidian larva. Science 274:1205–1208. doi:10.1126/science.274.5290.1205

    Article  PubMed  CAS  Google Scholar 

  • Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc B 363:1557–1568. doi:10.1098/rstb.2007.2246

    Article  Google Scholar 

  • Swalla BJ, Cameron CB, Corley LS, Garey JR (2000) Urochordates are monophyletic within the deuterostomes. Syst Biol 49:52–64. doi:10.1080/10635150050207384

    Article  PubMed  CAS  Google Scholar 

  • Van Name WG (1945) The North and South American ascidians. Bull Am Mus Nat Hist 84:1–476

    Google Scholar 

  • Wada H (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18s rDNA molecular phylogeny. Mol Biol Evol 15:1189–1194

    PubMed  CAS  Google Scholar 

  • Webb DA (1939) Observations on the blood of certain ascidians, with special reference to the biochemistry of vanadium. J Exp Zool 16:499–522

    CAS  Google Scholar 

  • Zeng L, Jacobs MW, Swalla BJ (2006) Coloniality has evolved once in stolidobranch ascidians. Integr Comp Biol 46:255–268. doi:10.1093/icb/icj035

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Adam for skillfully drawing Fig. 7. Financial support for this study through grant Sta 655/1-1&2 of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stach.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00435-008-0083-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stach, T., Kirbach, A. Larval convergence in a colonial tunicate: the organization of the sarcotubular complex in Ecteinascidia turbinata (Perophoridae, Phlebobranchiata, Tunicata, Chordata). Zoomorphology 128, 1–11 (2009). https://doi.org/10.1007/s00435-008-0069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-008-0069-1

Keywords

Navigation