Skip to main content

Advertisement

Log in

Chimeric antigen receptor T cells march into T cell malignancies

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

T cell malignancies represent a diverse collection of leukemia/lymphoma conditions in humans arising from aberrant T cells. Such malignancies are often associated with poor clinical prognoses, cancer relapse, as well as progressive resistance to anti-cancer treatments. While chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a revolutionary treatment strategy that is highly effective for treating B cell malignancies, its application as a treatment for T cell malignancies remains to be better explored. Furthermore, the effectiveness of CAR-T treatment in T cell malignancies is significantly influenced by the quality of contamination-free CAR-T cells during the manufacturing process, as well as by multiple characteristics of such malignancies, including the sharing of antigens across normal and malignant T cells, fratricide, and T cell aplasia. In this review, we provide a detailed account of the current developments in the clinical application of CAR-T therapy to treat T cell malignancies, offer strategies for addressing current challenges, and outline a roadmap toward its effective implementation as a broad treatment option for this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

Abbreviations

CAR-T:

Chimeric antigen receptor T

T-ALL/LBL:

T cell acute lymphoblastic leukemia/lymphoma

NHL:

Non-Hodgkin's lymphoma

PTCLs:

Peripheral T cell lymphomas

R/R:

Relapsed/recurrence

allo-HSCT:

Allogeneic hematopoietic stem cell transplantation

ICIs:

Immune checkpoint inhibitors

FDA:

Food and Drug Administration

TCR:

T cell receptor

DN:

Double-negative

DP:

Double-positive

DNT:

Double-negative T

NKT:

Natural killer T

Tregs:

Regulatory T cells

MHC:

Major histocompatibility complex

TAAs:

Tumor-associated antigens

scFv:

Single-chain variable fragments

APCs:

Antigen-presenting cells

CTCLs:

Cutaneous T cell lymphomas

CBE:

Cytosine base editor

ZFN:

Zinc finger nuclease

TALEN:

Transcription activator-like effector nuclease

DSB:

Double-strand breaks

GVHD:

Graft-versus-host disease

PEBL:

Protein expression blocker

ICANS:

Immune effector cell-associated neurotoxicity syndrome

Dox:

Doxycycline

NK:

Natural killer

mRNA:

Messenger RNA

AAV:

Adeno-associated virus

qPCR:

Quantitative PCR

References

  • Abou-El-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P et al (2021) Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov 2(5):408–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ et al (2018) Large deletions induced by Cas9 cleavage. Nature 560(7717):E8-e9

    CAS  PubMed  Google Scholar 

  • Ahn JS, Konno A, Gebe JA, Aruffo A, Hamilton MJ, Park YH, Davis WC (2002) Scavenger receptor cysteine-rich domains 9 and 11 of WC1 are receptors for the WC1 counter receptor. J Leukoc Biol 72(2):382–390

    CAS  PubMed  Google Scholar 

  • Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36(7):1720–1748

    PubMed  PubMed Central  Google Scholar 

  • Albinger N, Hartmann J, Ullrich E (2021) Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther 28(9):513–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE (1998) CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 188(12):2301–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bárcena A, Muench MO, Roncarolo MG, Spits H (1995) Tracing the expression of CD7 and other antigens during T- and myeloid-cell differentiation in the human fetal liver and thymus. Leuk Lymphoma 17(1–2):1–11

    PubMed  Google Scholar 

  • Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M et al (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassan R, Maino E, Cortelazzo S (2016) Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol 96(5):447–460

    PubMed  Google Scholar 

  • Bonilla FA, Kokron CM, Swinton P, Geha RS (1997) Targeted gene disruption of murine CD7. Int Immunol 9(12):1875–1883

    CAS  PubMed  Google Scholar 

  • Boumsell L, Gouttefangeas C, Dastot H, Schmid M, Gelin C, Bensussan A (1991) Identification of CD3 associated T cell receptor as a diagnostic tool in T Cell acute lymphoblastic lymphoma or leukemia. Leuk Lymphoma 4(3):187–192

    CAS  PubMed  Google Scholar 

  • Branella GM, Spencer HT (2021) Natural receptor- and ligand-based chimeric antigen receptors: strategies using natural ligands and receptors for targeted cell killing. Cells 11:1

    Google Scholar 

  • Brocker T, Karjalainen K (1995) Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 181(5):1653–1659

    CAS  PubMed  Google Scholar 

  • Brossard C, Semichon M, Trautmann A, Bismuth G (2003) CD5 inhibits signaling at the immunological synapse without impairing its formation. J Immunol 170(9):4623–4629

    CAS  PubMed  Google Scholar 

  • Campana D, van Dongen JJ, Mehta A, Coustan-Smith E, Wolvers-Tettero IL, Ganeshaguru K, Janossy G (1991) Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood 77(7):1546–1554

    CAS  PubMed  Google Scholar 

  • Casucci M, Falcone L, Camisa B, Norelli M, Porcellini S, Stornaiuolo A et al (2018) Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells co-expressing a suicide gene. Front Immunol 9:507

    PubMed  PubMed Central  Google Scholar 

  • Cazzola M (2016) Introduction to a review series: the 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood 127(20):2361–2364

    CAS  PubMed  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337

    PubMed  PubMed Central  Google Scholar 

  • Chen KH, Wada M, Firor AE, Pinz KG, Jares A, Liu H et al (2016) Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget 7(35):56219–56232

    PubMed  PubMed Central  Google Scholar 

  • Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A et al (2017) Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 31(10):2151–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, You F, Xiang S, Wang Y, Li Y, Meng H et al (2021) Chimeric antigen receptor T cells derived from CD7 nanobody exhibit robust antitumor potential against CD7-positive malignancies. Am J Cancer Res 11(11):5263–5281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang D, Zhu X (2022) Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 10(1):11

    PubMed  PubMed Central  Google Scholar 

  • Chetty R, Gatter K (1994) CD3: structure, function, and role of immunostaining in clinical practice. J Pathol 173(4):303–307

    CAS  PubMed  Google Scholar 

  • Chinen J, Shearer WT (2010) Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol 125(2 Suppl 2):S195-203

    PubMed  Google Scholar 

  • Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8):1145–1154

    CAS  PubMed  Google Scholar 

  • Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K et al (2018) An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32(9):1970–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daher M, Rezvani K (2018) Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol 51:146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai HP, Cui W, Cui QY, Zhu WJ, Meng HM, Zhu MQ et al (2022a) Haploidentical CD7 CAR T-cells induced remission in a patient with TP53 mutated relapsed and refractory early T-cell precursor lymphoblastic leukemia/lymphoma. Biomark Res 10(1):6

    PubMed  PubMed Central  Google Scholar 

  • Dai Z, Mu W, Zhao Y, Cheng J, Lin H, Ouyang K et al (2022b) T cells expressing CD5/CD7 bispecific chimeric antigen receptors with fully human heavy-chain-only domains mitigate tumor antigen escape. Signal Transduct Target Ther 7(1):85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L (2020) “Off-the-shelf” allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 19(3):185–199

    CAS  PubMed  Google Scholar 

  • Diaconu I, Ballard B, Zhang M, Chen Y, West J, Dotti G, Savoldo B (2017) Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T Cells. Mol Ther 25(3):580–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diorio C, Murray R, Naniong M, Barrera L, Camblin A, Chukinas J et al (2022) Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood 140(6):619–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM et al (2010) Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol 28(23):3730–3738

    PubMed  PubMed Central  Google Scholar 

  • Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM (2015) Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 1:15061

    PubMed  Google Scholar 

  • Fleischer LC, Spencer HT, Raikar SS (2019) Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 12(1):141

    PubMed  PubMed Central  Google Scholar 

  • Fu XR, Wan WJ, Sun ZC, Zhang XD, Nan FF, Ge JR et al (2020) Expression of CD7 and its correlation with prognosis in patients with NK/T-cell lymphoma. Zhonghua Xue Ye Xue Za Zhi 41(11):921–926

    CAS  PubMed  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Głowacki P, Rieske P (2022) Application and design of switches used in CAR. Cells 11:12

    Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–237

    CAS  PubMed  Google Scholar 

  • Golubovskaya V, Wu L (2016) Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (basel) 8:3

    Google Scholar 

  • Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH et al (2017) CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130(3):285–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouttefangeas C, Bensussan A, Boumsell L (1990) Study of the CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia. Blood 75(4):931–934

    CAS  PubMed  Google Scholar 

  • Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J et al (2019) CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568(7750):112–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harper T, Sharma A, Kaliyaperumal S, Fajardo F, Hsu K, Liu L et al (2022) Characterization of an Anti-CD70 half-life extended bispecific T-cell engager (HLE-BiTE) and associated on-target toxicity in cynomolgus monkeys. Toxicol Sci 189(1):32–50

    CAS  PubMed  Google Scholar 

  • Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M (2019) Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest 129(9):3499–3510

    PubMed  PubMed Central  Google Scholar 

  • Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Pohl C, Abken H (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 58(6):1116–1119

    CAS  PubMed  Google Scholar 

  • Hu Y, Zhou Y, Zhang M, Zhao H, Wei G, Ge W et al (2022) Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res 32(11):995–1007

    CAS  PubMed  Google Scholar 

  • Huang J, Alexey S, Li J, Jones T, Grande G, Douthit L et al (2019) Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies. Leukemia 33(9):2315–2319

    PubMed  Google Scholar 

  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K et al (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939–946

    CAS  PubMed  Google Scholar 

  • Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA et al (2021) Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 13:575

    Google Scholar 

  • Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q et al (2020) Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol 11:622509

    CAS  PubMed  Google Scholar 

  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365

    CAS  PubMed  Google Scholar 

  • Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K et al (2018) A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 24(3):352–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, Wong D, Png YT, Campana D (2018) A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv 2(5):517–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knox SJ, Levy R, Hodgkinson S, Bell R, Brown S, Wood GS et al (1991) Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood 77(1):20–30

    CAS  PubMed  Google Scholar 

  • Knox S, Hoppe RT, Maloney D, Gibbs I, Fowler S, Marquez C et al (1996) Treatment of cutaneous T-cell lymphoma with chimeric anti-CD4 monoclonal antibody. Blood 87(3):893–899

    CAS  PubMed  Google Scholar 

  • Kweon S, Phan MT, Chun S, Yu H, Kim J, Kim S et al (2019) Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front Immunol 10:879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lameris R, Ruben JM, Iglesias-Guimarais V, de Jong M, Veth M, van de Bovenkamp FS et al (2023) A bispecific T cell engager recruits both type 1 NKT and Vγ9Vδ2-T cells for the treatment of CD1d-expressing hematological malignancies. Cell Rep Med 4(3):100961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang H, Wang W, Yang P, Huang Y, Zhang J et al (2022) T cell receptor β-chain-targeting chimeric antigen receptor T cells against T cell malignancies. Nat Commun 13(1):4334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litzow MR, Ferrando AA (2015) How I treat T-cell acute lymphoblastic leukemia in adults. Blood 126(7):833–841

    CAS  PubMed  Google Scholar 

  • Liu Q, Xu Y, Mou J, Tang K, Fu X, Li Y et al (2020) Irradiated chimeric antigen receptor engineered NK-92MI cells show effective cytotoxicity against CD19(+) malignancy in a mouse model. Cytotherapy 22(10):552–562

    CAS  PubMed  Google Scholar 

  • Liu Y, Li W, Wang L, Ba M, Wang Q, Lu P et al (2021) Naturally selected anti-CD7 CAR-T cells without additional genetic manipulations as a potentially superior therapy for T-cell malignancies. Blood 138(Supplement 1):1696–1696

    Google Scholar 

  • Lu J, Jiang G (2022) The journey of CAR-T therapy in hematological malignancies. Mol Cancer 21(1):194

    PubMed  PubMed Central  Google Scholar 

  • Lu P, Liu Y, Yang J, Zhang X, Yang X, Wang H et al (2022) Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 140(4):321–334

    CAS  PubMed  Google Scholar 

  • Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF (1989) Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med 169(1):327–332

    CAS  PubMed  Google Scholar 

  • Ma G, Shen J, Pinz K, Wada M, Park J, Kim S et al (2019) Targeting T cell malignancies using CD4CAR T-cells and implementing a natural safety switch. Stem Cell Rev Rep 15(3):443–447

    PubMed  Google Scholar 

  • Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC et al (2017) Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med 23(12):1416–1423

    CAS  PubMed  Google Scholar 

  • Maciocia NC, Burley A, Nannini F, Wawrzyniecka P, Neves M, Karpanasamy T et al (2021) Anti-CD21 chimeric antigen receptor (CAR)-T cells for t cell acute lymphoblastic leukaemia (T-ALL). Blood 138(Supplement 1):902–902

    Google Scholar 

  • Maciocia PM, Wawrzyniecka PA, Maciocia NC, Burley A, Karpanasamy T, Devereaux S et al (2022) Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood 140(1):25–37

    CAS  PubMed  Google Scholar 

  • Mamonkin M, Rouce RH, Tashiro H, Brenner MK (2015) A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126(8):983–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamonkin M, Mukherjee M, Srinivasan M, Sharma S, Gomes-Silva D, Mo F et al (2018) Reversible transgene expression reduces fratricide and permits 4–1BB costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol Res 6(1):47–58

    CAS  PubMed  Google Scholar 

  • Marasco WA, Haseltine WA, Chen SY (1993) Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc Natl Acad Sci U S A 90(16):7889–7893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA et al (2022) Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 602(7897):503–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mina A, Pro B (2022) T time: emerging and new therapies for peripheral T-cell lymphoma. Blood Rev 52:100889

    CAS  PubMed  Google Scholar 

  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulvey E, Ruan J (2020) Biomarker-driven management strategies for peripheral T cell lymphoma. J Hematol Oncol 13(1):59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muro R, Takayanagi H, Nitta T (2019) T cell receptor signaling for γδT cell development. Inflamm Regen 39:6

    PubMed  PubMed Central  Google Scholar 

  • Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31(4):317–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz W, Huang B, Xu S, Li Y, Zhu L, Yiqiao H et al (2021) AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J 11(6):119

    PubMed  PubMed Central  Google Scholar 

  • Nyberg WA, Ark J, To A, Clouden S, Reeder G, Muldoon JJ et al (2023) An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell 186(2):446-460.e419

    CAS  PubMed  Google Scholar 

  • Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W et al (2021) Donor-derived CD7 chimeric antigen receptor T Cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol 39(30):3340–3351

    CAS  PubMed  Google Scholar 

  • Petersen CT, Hassan M, Morris AB, Jeffery J, Lee K, Jagirdar N et al (2018) Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists. Blood Adv 2(3):210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinz K, Liu H, Golightly M, Jares A, Lan F, Zieve GW et al (2016) Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia 30(3):701–707

    CAS  PubMed  Google Scholar 

  • Pinz KG, Yakaboski E, Jares A, Liu H, Firor AE, Chen KH et al (2017) Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget 8(68):112783–112796

    PubMed  PubMed Central  Google Scholar 

  • Png YT, Vinanica N, Kamiya T, Shimasaki N, Coustan-Smith E, Campana D (2017) Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv 1(25):2348–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich PM, Komarovskaya ME, Wrzesinski SH, Alderman JL, Budak-Alpdogan T, Karpikov A et al (2009) Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther 20(1):51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowich H, Pricop L, Herberman RB, Whiteside TL (1994) Expression and function of CD7 molecule on human natural killer cells. J Immunol 152(2):517–526

    CAS  PubMed  Google Scholar 

  • Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17(3):147–167

    PubMed  Google Scholar 

  • Raikar SS, Fleischer LC, Moot R, Fedanov A, Paik NY, Knight KA et al (2018) Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. Oncoimmunology 7(3):e1407898

    PubMed  Google Scholar 

  • Rasaiyaah J, Georgiadis C, Preece R, Mock U, Qasim W (2018) TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy. JCI Insight 3:13

    Google Scholar 

  • Roselli E, Boucher JC, Li G, Kotani H, Spitler K, Reid K et al (2021) 4–1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer 9:10

    Google Scholar 

  • Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE et al (2018) Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 24(10):1499–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabattini E, Bacci F, Sagramoso C, Pileri SA (2010) WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica 102(3):83–87

    CAS  PubMed  Google Scholar 

  • Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, Roca-Ho H, Blanch-Lombarte O, González-García S et al (2019) Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 133(21):2291–2304

    PubMed  PubMed Central  Google Scholar 

  • Savage PA, Klawon DEJ, Miller CH (2020) Regulatory T Cell Development. Annu Rev Immunol 38:421–453

    CAS  PubMed  Google Scholar 

  • Scarfò I, Ormhøj M, Frigault MJ, Castano AP, Lorrey S, Bouffard AA et al (2018) Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood 132(14):1495–1506

    PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhang Z, Cen H, Wu H, Zhang S, Liu J et al (2021) CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol 14(1):162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL et al (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133(7):697–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svoboda J, Rheingold SR, Gill SI, Grupp SA, Lacey SF, Kulikovskaya I et al (2018) Nonviral RNA chimeric antigen receptor-modified T cells in patients with Hodgkin lymphoma. Blood 132(10):1022–1026

    CAS  PubMed  Google Scholar 

  • Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38(11):805–816

    CAS  PubMed  Google Scholar 

  • Teachey DT, Pui CH (2019) Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol 20(3):e142–e154

    PubMed  PubMed Central  Google Scholar 

  • Terstappen LW, Huang S, Picker LJ (1992) Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 79(3):666–677

    CAS  PubMed  Google Scholar 

  • Tu Z, Xiao R, Xiong J, Tembo KM, Deng X, Xiong M et al (2016) CCR9 in cancer: oncogenic role and therapeutic targeting. J Hematol Oncol 9:10

    PubMed  PubMed Central  Google Scholar 

  • van der Stegen SJ, Hamieh M, Sadelain M (2015) The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 14(7):499–509

    PubMed  PubMed Central  Google Scholar 

  • Wada M, Zhang H, Fang L, Feng J, Tse CO, Zhang W et al (2020) Characterization of an anti-CD5 directed CAR T-cell against T-cell malignancies. Stem Cell Rev Rep 16(2):369–384

    CAS  PubMed  Google Scholar 

  • Watanabe N, Mo F, Zheng R, Ma R, Bray VC, van Leeuwen DG et al (2023) Feasibility and preclinical efficacy of CD7-unedited CD7 CAR T cells for T cell malignancies. Mol Ther 31(1):24–34

    CAS  PubMed  Google Scholar 

  • Wei W, Ma H, Yang D, Sun B, Tang J, Zhu Y et al (2023) SECTM1-based CAR-T cells enriched with CD7low/negative subsets exhibit efficacy in CD7-positive malignancies. Blood Adv 7:2941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH, Jaffe ES (2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133(16):1703–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood GS, Warner NL, Warnke RA (1983) Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol 131(1):212–216

    CAS  PubMed  Google Scholar 

  • Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M et al (2001) Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 98(9):2626–2632

    CAS  PubMed  Google Scholar 

  • Ye J, Jia Y, Tuhin IJ, Tan J, Monty MA, Xu N et al (2022) Feasibility study of a novel preparation strategy for anti-CD7 CAR-T cells with a recombinant anti-CD7 blocking antibody. Mol Ther Oncolytics 24:719–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Yu H, Jin X, Li J, Guo H, Shi Q et al (2017) Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions. J Immunol 198(4):1553–1564

    CAS  PubMed  Google Scholar 

  • You F, Wang Y, Jiang L, Zhu X, Chen D, Yuan L et al (2019) A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res 9(1):64–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Feng J, Zhang W, Chen Q, Cao Y, Pinz K et al (2019a) First-in-human CD4 CAR clinical trial on peripheral T-cell lymphoma. Blood 134(1):2881–2881

    Google Scholar 

  • Zhang RY, Wei D, Liu ZK, Yong YL, Wei W, Zhang ZY et al (2019b) Doxycycline inducible chimeric antigen receptor T Cells targeting CD147 for hepatocellular carcinoma therapy. Front Cell Dev Biol 7:233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Chen D, Fu X, Meng H, Nan F, Sun Z et al (2022a) Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma. Clin Cancer Res 28(13):2830–2843

    CAS  PubMed  Google Scholar 

  • Zhang X, Jin X, Sun R, Zhang M, Lu W, Zhao M (2022b) Gene knockout in cellular immunotherapy: application and limitations. Cancer Lett 540:215736

    CAS  PubMed  Google Scholar 

  • Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP et al (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 13(1):151–159

    CAS  PubMed  Google Scholar 

  • Zhao J, Lin Q, Song Y, Liu D (2018) Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 11(1):132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng NS, Zhao XY, Wei D, Miao JL, Liu ZK, Yong YL et al (2022) CD147-specific chimeric antigen receptor T cells effectively inhibit T cell acute lymphoblastic leukemia. Cancer Lett 542:215762

    CAS  PubMed  Google Scholar 

  • Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga-Pflücker JC (2004) T-cell development made simple. Nat Rev Immunol 4(1):67–72

    PubMed  Google Scholar 

Download references

Acknowledgements

Manuscript editor Julian Heng (Remotely Consulting, Australia) provided professional English language editing of this article. Dr. Sun Bin provided the funding support.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 82103107).

Author information

Authors and Affiliations

Authors

Contributions

TJ drafted the original manuscript and visualized the tables and figures. XZ designed the review and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xudong Zhao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhao, X. Chimeric antigen receptor T cells march into T cell malignancies. J Cancer Res Clin Oncol 149, 13459–13475 (2023). https://doi.org/10.1007/s00432-023-05148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05148-5

Keywords