Skip to main content

Advertisement

Log in

AHR, a novel inhibitory immune checkpoint receptor, is a potential therapeutic target for chemoresistant glioblastoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to elucidate the mechanism underlying temozolomide resistance in patients with MGMT promoter hypomethylated glioblastoma, which is correlated with poor prognosis. The objective is to identify therapeutic targets and drugs suitable for temozolomide-resistant glioblastoma patients using big data analysis.

Methods

In this retrospective study, transcriptome sequencing data from 457 glioblastoma patients, multi-omics data, and single-cell sequencing data were employed to assess the expression pattern, prognostic value, and biological functions of AHR in glioblastoma. The HERB database was utilized to screen for AHR-targeted drugs for glioblastoma treatment. Validation of our findings was conducted using multiplex immunofluorescence staining of clinical samples and T cells and tumor cells co-culture models.

Results

Our findings demonstrated that patients with MGMT promoter unmethylation did not benefit from postoperative temozolomide chemotherapy due to resistance arising from DNA repair function and tumor immune response. AHR was found to be expressed in immune cells and exhibited an immunomodulatory role in glioblastoma with MGMT promoter unmethylation. AHR was identified as a potential novel inhibitory immune checkpoint receptor, serving as a therapeutic target for temozolomide-resistant glioblastoma. Furthermore, targeting AHR with Semen aesculi markedly enhanced the cytotoxic effect of T cells on glioma cells.

Conclusions

In addition to DNA repair function, the tumor immune response plays a pivotal role in temozolomide resistance of glioblastoma. Herbal compounds targeting AHR may offer an effective treatment for temozolomide-resistant glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All non-private data and raw data associated with this study can be provided upon reasonable request.

Abbreviations

AHR:

Aromatic hydrocarbon receptor

GBM:

Glioblastoma

GEPIA:

Gene expression profiling interactive analysis

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

IDH:

Isocitrate dehydrogenases

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MDMs:

Monocyte-derived macrophages

MGMT:

O6-methylguanine-DNA methyltransferase

PLK2:

Polo-like kinase 2

TMZ:

Temozolomide

References

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C et al (2009) Systematic rna interference reveals that oncogenic kras-driven cancers require tbk1. Nature 462(7269):108–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Y, Li Y, Shrestha G, Wen X, Cai B, Wang K, Wan X (2019) Ite, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration. Toxicology 421:1–8

    CAS  PubMed  Google Scholar 

  • Binabaj MM, Bahrami A, ShahidSales S, Joodi M, Joudi Mashhad M, Hassanian SM, Anvari K, Avan A (2018) The prognostic value of mgmt promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233(1):378–386

    CAS  PubMed  Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter TC, Medina-Flores R, Lawler BE (2018) Glioblastoma treatment with temozolomide and bevacizumab and overall survival in a rural tertiary healthcare practice. Biomed Res Int 2018:6204676

    PubMed  PubMed Central  Google Scholar 

  • Chai R, Li G, Liu Y, Zhang K, Zhao Z, Wu F, Chang Y, Pang B, Li J, Li Y et al (2021) Predictive value of mgmt promoter methylation on the survival of tmz treated idh-mutant glioblastoma. Cancer Biol Med 18(1):272–282

    PubMed  Google Scholar 

  • Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149(1):36–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias AS, Helguero L, Almeida CR, Duarte IF (2021) Natural compounds as metabolic modulators of the tumor microenvironment. Molecules 26(12):3494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J, Bu D, Liu X, Huo P, Cao W et al (2021) Herb: a high-throughput experiment- and reference-guided database of traditional chinese medicine. Nucleic Acids Res 49(D1):D1197–D1206

    CAS  PubMed  Google Scholar 

  • Feldheim J, Kessler AF, Monoranu CM, Ernestus RI, Lohr M, Hagemann C (2019) Changes of o(6)-methylguanine DNA methyltransferase (mgmt) promoter methylation in glioblastoma relapse-a meta-analysis type literature review. Cancers (basel) 11(12):1837

    CAS  PubMed  Google Scholar 

  • Feng S, Cao Z, Wang X (2013) Role of aryl hydrocarbon receptor in cancer. Biochem Biophys Acta 1836(2):197–210

    CAS  PubMed  Google Scholar 

  • Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6(7):2585–2597

    CAS  PubMed  Google Scholar 

  • Gabriely G, Quintana FJ (2020) Role of ahr in the control of gbm-associated myeloid cells. Semin Cancer Biol 64:13–18

    CAS  PubMed  Google Scholar 

  • Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141(1–2):131–160

    CAS  PubMed  Google Scholar 

  • Hao N, Whitelaw ML (2013) The emerging roles of ahr in physiology and immunity. Biochem Pharmacol 86(5):561–570

    CAS  PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L et al (2005) Mgmt gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    CAS  PubMed  Google Scholar 

  • Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, Wang K, Wang Z, Nam Y, Jiang B et al. 2018. Mutational landscape of secondary glioblastoma guides met-targeted trial in brain tumor. Cell.

  • Jiang T, Nam DH, Ram Z, Poon WS, Wang J, Boldbaatar D, Mao Y, Ma W, Mao Q, You Y et al (2021) Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 499:60–72

    CAS  PubMed  Google Scholar 

  • Jin UH, Karki K, Cheng Y, Michelhaugh SK, Mittal S, Safe S (2019) The aryl hydrocarbon receptor is a tumor suppressor-like gene in glioblastoma. J Biol Chem 294(29):11342–11353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein A, Schilling D, Combs SE, Schmid TE (2021) Lomeguatrib increases the radiosensitivity of MGMT unmethylated human glioblastoma multiforme cell lines. Int J Mol Sci 22(13):6781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolluri SK, Jin UH, Safe S (2017) Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 91(7):2497–2513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larigot L, Juricek L, Dairou J, Coumoul X (2018) Ahr signaling pathways and regulatory functions. Biochim Open 7:1–9

    PubMed  PubMed Central  Google Scholar 

  • Leclerc D, Staats Pires AC, Guillemin GJ, Gilot D (2021) Detrimental activation of ahr pathway in cancer: An overview of therapeutic strategies. Curr Opin Immunol 70:15–26

    CAS  PubMed  Google Scholar 

  • Li G, Wang Z, Zhang C, Liu X, Cai J, Wang Z, Hu H, Wu F, Bao Z, Liu Y et al (2017) Molecular and clinical characterization of tim-3 in glioma through 1,024 samples. Oncoimmunology 6(8):e1328339

    PubMed  PubMed Central  Google Scholar 

  • Li M, Wang F, Zhang C, Li MA, Wang T, Li YC, Fu FH (2022) Integrated systematic pharmacology analysis and experimental validation to reveal the mechanism of action of semen aesculi on inflammatory bowel diseases. J Ethnopharmacol 298:115627

    PubMed  Google Scholar 

  • Mansouri A, Hachem LD, Mansouri S, Nassiri F, Laperriere NJ, Xia D, Lindeman NI, Wen PY, Chakravarti A, Mehta MP et al (2019) Mgmt promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro Oncol 21(2):167–178

    CAS  PubMed  Google Scholar 

  • Masoudi S, Hassanzadeh Nemati A, Fazli HR, Beygi S, Moradzadeh M, Pourshams A, Mohamadkhani A (2019) An increased level of aryl hydrocarbon receptor in patients with pancreatic cancer. Middle East J Dig Dis 11(1):38–44

    PubMed  Google Scholar 

  • Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part i: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20(7):899–905

    CAS  PubMed  Google Scholar 

  • Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M, Bahr O et al (2022) Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase 3 trial. Neuro Oncol 25(1):123–134

    PubMed Central  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203

    CAS  PubMed  Google Scholar 

  • Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22(12 Suppl 2):iv1–iv96

    PubMed  PubMed Central  Google Scholar 

  • Park CK, Kim JE, Kim JY, Song SW, Kim JW, Choi SH, Kim TM, Lee SH, Kim IH, Park SH (2012) The changes in mgmt promoter methylation status in initial and recurrent glioblastomas. Transl Oncol 5(5):393–397

    PubMed  PubMed Central  Google Scholar 

  • Park CR, Lee JS, Son CG, Lee NH (2021) A survey of herbal medicines as tumor microenvironment-modulating agents. Phytother Res PTR 35(1):78–94

    PubMed  Google Scholar 

  • Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD (2010) Mgmt promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12(2):116–121

    CAS  PubMed  Google Scholar 

  • Shin JH, Moreno-Nieves UY, Zhang LH, Chen C, Dixon AL, Linde MH, Mace EM, Sunwoo JB (2021) Ahr regulates nk cell migration via asb2-mediated ubiquitination of filamin a. Front Immunol 12:624284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silber JR, Bobola MS, Blank A, Chamberlain MC (2012) O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta 1826(1):71–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58

    CAS  PubMed  Google Scholar 

  • Stanford EA, Ramirez-Cardenas A, Wang Z, Novikov O, Alamoud K, Koutrakis P, Mizgerd JP, Genco CA, Kukuruzinska M, Monti S et al (2016a) Role for the aryl hydrocarbon receptor and diverse ligands in oral squamous cell carcinoma migration and tumorigenesis. Mol Cancer Res MCR 14(8):696–706

    CAS  PubMed  Google Scholar 

  • Stanford EA, Wang Z, Novikov O, Mulas F, Landesman-Bollag E, Monti S, Smith BW, Seldin DC, Murphy GJ, Sherr DH (2016b) The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol 14:20

    PubMed  PubMed Central  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  • Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, Group EGW (2014) High-grade glioma: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93–iii101

    PubMed  Google Scholar 

  • Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA J Am Med Assoc 318(23):2306–2316

    CAS  Google Scholar 

  • Su JM, Lin P, Chang H (2013) Prognostic value of nuclear translocation of aryl hydrocarbon receptor for non-small cell lung cancer. Anticancer Res 33(9):3953–3961

    PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talari NK, Panigrahi MK, Madigubba S, Phanithi PB (2018) Overexpression of aryl hydrocarbon receptor (ahr) signalling pathway in human meningioma. J Neurooncol 137(2):241–248

    CAS  PubMed  Google Scholar 

  • Tan N, Liu J, Li P, Sun Z, Pan J, Zhao W (2019) Reactive oxygen species metabolism-based prediction model and drug for patients with recurrent glioblastoma. Aging (albany NY) 11(23):11010–11029

    CAS  PubMed  Google Scholar 

  • Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ (2022) Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 19(11):1397–1415

    CAS  PubMed  Google Scholar 

  • Trikha P, Lee DA (2020) The role of ahr in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 1873(1):188335

    CAS  PubMed  Google Scholar 

  • Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65(14):6394–6400

    CAS  PubMed  Google Scholar 

  • Vacher S, Castagnet P, Chemlali W, Lallemand F, Meseure D, Pocard M, Bieche I, Perrot-Applanat M (2018) High ahr expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS ONE 13(1):e0190619

    PubMed  PubMed Central  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr, and nf1. Cancer Cell 17(1):98–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang C, Liu X, Wang Z, Sun L, Li G, Liang J, Hu H, Liu Y, Zhang W et al (2016) Molecular and clinical characterization of pd-l1 expression at transcriptional level via 976 samples of brain glioma. Oncoimmunology 5(11):e1196310

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J (2021) Nanoformulations of ursolic acid: a modern natural anticancer molecule. Front Pharmacol 12:706121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME (2010) Mgmt promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6(1):39–51

    CAS  PubMed  Google Scholar 

  • Wick W, Platten M (2014) Understanding and targeting alkylator resistance in glioblastoma. Cancer Discov 4(10):1120–1122

    CAS  PubMed  Google Scholar 

  • Wick W, Weller M, van den Bent M, Sanson M, Weiler M, von Deimling A, Plass C, Hegi M, Platten M, Reifenberger G (2014) Mgmt testing—the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10(7):372–385

    CAS  PubMed  Google Scholar 

  • Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA (2021a) Parp-mediated parylation of mgmt is critical to promote repair of temozolomide-induced o6-methylguanine DNA damage in glioblastoma. Neuro Oncol 23(6):920–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang C, Liu X, He Z, Shan B, Zeng Q, Zhao Q, Zhu H, Liao H, Cen X et al (2021b) Arih1 signaling promotes anti-tumor immunity by targeting pd-l1 for proteasomal degradation. Nat Commun 12(1):2346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Long L, Zhang X, Song K, Wang D, Xiong X, Gao H, Sha L (2019) 16-tigloyl linked barrigenol-like triterpenoid from semen aesculi and its anti-tumor activity in vivo and in vitro. RSC Adv 9(54):31758–31772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    CAS  PubMed  Google Scholar 

  • Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM (2020) Targeting tumor immunosuppressive microenvironment for the prevention of hepatic cancer: applications of traditional chinese medicines in targeted delivery. Curr Top Med Chem 20(30):2789–2800

    CAS  PubMed  Google Scholar 

  • Zhang J, Sun H, Jiang K, Song X, Wang X, Yang Y, Liu H, Ji Q, Yu X, Liu Y et al (2021a) Cudraxanthone l inhibits gastric cancer by regulating the mapk signalling and promoting fas-mediated pathway. Biomed Pharmacother 141:111876

    CAS  PubMed  Google Scholar 

  • Zhang Q, He L, Jiang Q, Zhu H, Kong D, Zhang H, Cheng Z, Deng H, Zheng Y, Ying X (2021b) Systems pharmacology-based dissection of anti-cancer mechanism of traditional chinese herb saussurea involucrata. Front Pharmacol 12:678203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Yang S, Cui X, Wang Q, Yang E, Tong F, Hong B, Xiao M, Xin L, Xu C et al (2023) A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro Oncol 25(5):857–870

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Mr. Gengrun Li for his assistance in preparing the original manuscript.

Funding

This research was supported by grants from the National Natural Science Foundation of China (Grant no. 82004137).

Author information

Authors and Affiliations

Authors

Contributions

WZ contributed to the conceptualization, methodology, writing (review and editing), and supervision of the study. YB was responsible for data curation, methodology, writing the original draft, and supervision. NT contributed to the conceptualization, methodology, writing (review and editing), supervision, and funding acquisition. YW, PL, and JL were responsible for data curation, visualization, and software. ZS, JP, and SS participated in validation, visualization, and software development. SL and ZL contributed to validation and visualization. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Nian Tan or Yuhong Bian.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethics approval and consent to participate

The study was approved by the ethics committee of Tianjin University of Traditional Chinese Medicine and conducted in accordance with the principles of the Declaration of Helsinki.

Patient consent for publication

Written informed consent was obtained from all participating patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

432_2023_4894_MOESM1_ESM.tif

Supplementary file1 Figure S1. Study flow chart. First, the study reconfirms that MGMT promoter region unmethylation results in treatment resistance in GBM patients. Then, functional enrichment analysis reveals elevated DNA repair-related and immune-related functions in treatment-resistant GBM patients. Among immune-related functions, AHR, but not PLK2, is identified as a potential therapeutic target. Further study shows AHR enrichment in MDMs and T cells, leading to an immunosuppressive tumor microenvironment. Finally, specific AHR expression in MDMs and T cells is verified in GBM samples. Immune activation role of Semen aesculi is initially explored in co-culture models (TIF 5522 KB)

Supplementary file2 Figure S2. Patient enrollment process (TIF 8748 KB)

432_2023_4894_MOESM3_ESM.tif

Supplementary file3 Figure S3. Defining cell clusters of GBM single-cell sequencing data. (A) Cell clusters of GBM single-cell sequencing data in GSE89567. (B) Expression of marker genes in different cell clusters in GSE89567. (C) Cell clusters of GBM single-cell sequencing data in GSE84465. (D) Expression of marker genes in different cell clusters in GSE84465 (TIF 16903 KB)

Supplementary file4 (XLSX 16 KB)

Supplementary file5 (XLSX 4088 KB)

Supplementary file6 (XLSX 10 KB)

Supplementary file7 (DOCX 49 KB)

Supplementary file8 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, N., Zhao, W., Wang, Y. et al. AHR, a novel inhibitory immune checkpoint receptor, is a potential therapeutic target for chemoresistant glioblastoma. J Cancer Res Clin Oncol 149, 9705–9720 (2023). https://doi.org/10.1007/s00432-023-04894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04894-w

Keywords

Navigation