Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.





Similar content being viewed by others
References
Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486. https://doi.org/10.1155/2012/936486
Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. The Lancet 371:1695–1709. https://doi.org/10.1016/S0140-6736(08)60728-X
Aznavoorian S, Moore BA, Alexanderlister LD, Hallit SL, Windsor LJ, Engler JA (2001) Membrane type I-matrix metalloproteinase-mediated degradation of type I collagen by oral squamous cell carcinoma cells. Cancer Res 61: 6264–6275. https://cancerres.aacrjournals.org/content/canres/61/16/6264.full.pdf.
Baselga J, Trigo J, Bourhis J, Tortochaux J, Cortés-Funes H, Hitt R, Gascón P, Amellal N, Harstrick A, Eckardt A (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23:5568–5577. https://doi.org/10.1200/JCO.2005.07.119
Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030
Blanco E, Shen H, Ferrari M (2020) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. https://doi.org/10.1038/nbt.3330
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578. https://doi.org/10.1056/NEJMoa053422
Boonkitticharoen V, Kulapaditharom B, Leopairut J, Kraiphibul P, Larbcharoensub N, Cheewaruangroj W, Chintrakarn C, Pochanukul L (2008) Vascular endothelial growth factor a and proliferation marker in prediction of lymph node metastasis in oral and pharyngeal squamous cell carcinoma. Arch Otolaryngol-Head Neck Surg 134:1305–1311. https://doi.org/10.1001/archotol.134.12.1305
Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 16:1–13. https://doi.org/10.1186/s12951-018-0403-9
Cai S, Alhowyan A, Yang Q, Forrest W, Shnayder Y, Forrest ML (2014) Cellular uptake and internalization of hyaluronan-based doxorubicin and cisplatin conjugates. J Drug Target 22:648–657. https://doi.org/10.3109/1061186X.2014.921924
Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3:28–37. https://doi.org/10.1007/s13238-012-2003-z
Chen CW, Lee PH, Chan YC, Hsiao M, Chen CH, Wu PC, Wu PR, Tsai DP, Tu D, Chen X (2015a) Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J Mater Chem B 3:8293–8302. https://doi.org/10.1039/C5TB01393C
Chen WH, Lecaros R, Tseng YC, Huang L, Hsu YC (2015b) Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett 359:65–74. https://doi.org/10.1016/j.canlet.2014.12.052
Chen CW, Chan YC, Hsiao M, Liu RS (2016) Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl Mater Interfaces 8:32108–32119. https://doi.org/10.1021/acsami.6b07770
Chen S-H, Hsiao S-Y, Chang K-Y, Chang J-Y (2021) New insights into oral squamous cell carcinoma: from clinical aspects to molecular tumorigenesis. Int J Mol Sci 22:2252. https://doi.org/10.3390/ijms22052252
Cheng C, Castro G, Liu Ch, Lau P (2019) Advanced nanotechnology: an arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta 492:12–19. https://doi.org/10.1016/j.cca.2019.01.027
Cheng X, Zhang L, Liu X, Xu L, Liu J (2021) Folic acid mediated cisplatin magnetic nanodrug targeting in the treatment of oral squamous cell carcinoma. Mater Express 11:1299–1305. https://doi.org/10.1166/mex.2021.2036
Chowdhury PS, Chamoto K, Honjo T (2018) Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med 283:110–120. https://doi.org/10.1111/joim.12708
Chu C-K, Tu Y-C, Hsiao J-H, Yu J-H, Yu C-K, Chen S-Y, Tseng P-H, Chen S, Kiang Y-W, Yang CC (2016) Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology 27:115102. https://doi.org/10.1088/0957-4484/27/11/115102
Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. https://doi.org/10.1126/science.1067100
Damiani V, Falvo E, Fracasso G, Federici L, Pitea M, De Laurenzi V, Sala G, Ceci P (2017) Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int J Mol Sci 18:1555. https://www.mdpi.com/1422-0067/18/7/1555.
De Oliveira M, Novaes JA, Hirz T, Guijarro I, Nilsson M, Pisegna MA, Poteete A, Barsoumian HB, Fradette JJ, Chen LN, Gibbons DL, Tian X, Wang J, Myers JN, Mcarthur MJ, Bell D, William WN, Heymach JV (2021) Targeting of CD40 and PD-L1 pathways inhibits progression of oral premalignant lesions in a carcinogen-induced model of oral squamous cell carcinoma. Cancer Prev Res 14:313–324. https://doi.org/10.1158/1940-6207.CAPR-20-0418
Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y, Yoshizaki T (2013) Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 104:369–374. https://doi.org/10.1111/cas.12079
Fan H-Y, Zhu Z-L, Zhang W-L, Yin Y-J, Tang Y-L, Liang X-H, Zhang L (2020a) Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur J Med Chem 199:112394. https://doi.org/10.1016/j.ejmech.2020.112394
Fan L, Wang J, Xia C, Zhang Q, Pu Y, Chen L, Chen J, Wang Y (2020b) Glutathione-sensitive and folate-targeted nanoparticles loaded with paclitaxel to enhance oral squamous cell carcinoma therapy. J Mater Chem B 8:3113–3122. https://doi.org/10.1039/C9TB02818H
Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B (2017) LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med 6:2897–2908. https://doi.org/10.1002/cam4.1253
Farmer ZL, Kim ES, Carrizosa DR (2019) Gene therapy in head and neck cancer. Oral Maxillofac Surg Clin 31:117–124. https://doi.org/10.1016/j.coms.2018.08.006
Gabriel D, Zuluaga MF, Lange N (2011) On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochem Photobiol Sci 10:689–703. https://doi.org/10.1039/C0PP00341G
Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2:48–58. https://doi.org/10.1038/nrc706
Greenberg JS, Naggar AKE, Mo V, Roberts D, Myers JN (2003) Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Implication for therapeutic decision making. Cancer 98:508–515. https://doi.org/10.1002/cncr.11526
Greish K (2012) Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet? Drug Discov Today Technol 9:e161–e166. https://doi.org/10.1016/j.ddtec.2011.11.010
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan W-E (2018) Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 16:1–10. https://doi.org/10.1186/s12951-018-0398-2
Gusti-Ngurah-Putu EP, Huang L, Hsu YC (2019) Effective combined photodynamic therapy with lipid platinum chloride nanoparticles therapies of oral squamous carcinoma tumor inhibition. J Clin Med 8:2112. https://doi.org/10.3390/jcm8122112
Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sinica B 6:287–296. https://doi.org/10.1016/j.apsb.2016.02.001
Heery CR, O’sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, Lamping E, Oyelakin I, Marté JL, Lepone LM, Donahue RN, Grenga I, Cuillerot J-M, Neuteboom B, Heydebreck AV, Chin K, Schlom J, Gulley JL (2017) Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol 18:587–598. https://doi.org/10.1016/S1470-2045(17)30239-5
Herbst RS, Arquette M, Shin DM, Dicke K, Vokes EE, Azarnia N, Hong WK, Kies MS (2005) Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 23:5578–5587. https://doi.org/10.1200/JCO.2005.07.120
Hood JL (2016) Post isolation modification of exosomes for nanomedicine applications. Nanomedicine 11:1745–1756. https://doi.org/10.2217/nnm-2016-0102
Huang S-M, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–1940. http://cancerres.aacrjournals.org/content/59/8/1935.abstract.
Huang Q, Yu GP, Mccormick SA, Mo J, Datta B, Mahimkar M, Lazarus P, Schäffer AA, Desper R, Schantz SP (2002) Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes Chromosom Cancer 34:224–233. https://doi.org/10.1002/gcc.10062
Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39:747–753. https://doi.org/10.1002/lsm.20577
Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519–1528. https://doi.org/10.1039/C3PY01192E
Hussein AA, Helder MN, De Visscher JG, Leemans CR, Braakhuis BJ, De Vet HCW, Forouzanfar T (2017) Global incidence of oral and oropharynx cancer in patients younger than 45 years versus older patients: a systematic review. Eur J Cancer (oxford, England:1990) 82:115–127. https://doi.org/10.1016/j.ejca.2017.05.026
Ibrahim I, Gamal-Eldeen AM, Eldeen A (2019) Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL-27 cells. Arch Oral Biol 103:47–54. https://doi.org/10.1016/j.archoralbio.2019.05.011
Iurisci I, Cumashi A, Sherman AA, Tsvetkov YE, Tinari N, Piccolo E, D’egidio M, Adamo V, Natoli C, Rabinovich GA, Iacobelli S, Nifantiev NE, The Consorzio Interuniversitario Nazionale Per La Bio-Oncologia I (2009) Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis. Anticancer Res 29: 403–410. https://ar.iiarjournals.org/content/anticanres/29/1/403.full.pdf.
Jiang Y, Fei W, Cen X, Tang Y, Liang X (2015) Near-infrared light activatable multimodal gold nanostructures platform: an emerging paradigm for cancer therapy. Curr Cancer Drug Targets 15:406–422. https://doi.org/10.2174/1568009615666150407125333
Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X (2018) Core-satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Adv Func Mater 28:1801961. https://doi.org/10.1002/adfm.201801961
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6:1–22. https://doi.org/10.7150/ijms.10083
Kalaydina R-V, Bajwa K, Qorri B, Decarlo A, Szewczuk MR (2018) Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomed 13:4727–4745. https://doi.org/10.2147/IJN.S168053
Kaminskas LM, Mcleod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, Owen DJ, Porter C (2012) A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. nanomedicine: nanotechnology. Biol Med 8:103–111. https://doi.org/10.1016/j.nano.2011.05.013
Kawasaki G, Kato Y, Mizuno A (2002) Cathepsin expression in oral squamous cell carcinoma: Relationship with clinicopathologic factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 93:446–454. https://doi.org/10.1067/moe.2002.122834
Kerawala C, Roques T, Jeannon JP, Bisase B (2016) Oral cavity and lip cancer: United Kingdom national multidisciplinary guidelines. J Laryngol Otol 130:S83–S89. https://doi.org/10.1017/s0022215116000499
Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67. https://doi.org/10.1016/j.cell.2010.03.015
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S (2019) Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics 11:302. https://doi.org/10.3390/pharmaceutics11070302
Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 4:66–83. https://doi.org/10.7150/jca.5112
Kruijtzer CMF (2002) Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist 7:516–530. https://doi.org/10.1634/theoncologist.7-6-516
Lecaros RLG, Huang L, Lee T-C, Hsu Y-C (2016) Nanoparticle delivered VEGF-A siRNA enhances photodynamic therapy for head and neck cancer treatment. Mol Ther 24:106–116. https://doi.org/10.1038/mt.2015.169
Legge CJ, Colley HE, Lawson MA, Rawlings AE (2019) Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J Oral Pathol Med 48:803–809. https://doi.org/10.1111/jop.12921
Li J, Gong C, Feng X, Zhou X, Xu X, Xie L, Wang R, Zhang D, Wang H, Deng P (2012) Biodegradable thermosensitive hydrogel for SAHA and DDP delivery: therapeutic effects on oral squamous cell carcinoma xenografts. PLoS ONE 7:e33860. https://doi.org/10.1371/journal.pone.0033860
Li Q, Wen Y, Wen J, Zhang Y-P, Xu X-D, Victorious A, Zavitz R, Xu X (2016a) A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery. RSC Adv 6:38984–38989. https://doi.org/10.1039/C5RA25913D
Li Q, Wen Y, You X, Zhang F, Shah V, Chen X, Tong D, Wei X, Yin L, Wu J, Xu X (2016b) Development of a reactive oxygen species (ROS)-responsive nanoplatform for targeted oral cancer therapy. J Mater Chem B 4:4675–4682. https://doi.org/10.1039/C6TB01016D
Li X, Li L, Huang Y, Liu B, Chi H, Shi L, Zhang W, Li G, Niu Y, Zhu X (2017) Synergistic therapy of chemotherapeutic drugs and MTH1 inhibitors using a pH-sensitive polymeric delivery system for oral squamous cell carcinoma. Biomater Sci 5:2068–2078. https://doi.org/10.1039/C7BM00395A
Li L, Yang W-W, Xu D-G (2019a) Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 27:423–433. https://doi.org/10.1080/1061186x.2018.1519029
Li W, Tao C, Wang J, Le Y, Zhang J (2019b) MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Adv 9:31264–31273. https://doi.org/10.1039/C9RA04343H
Li Z, Liu Q, Zhang Y, Yang Y, Zhou X, Peng W, Liang Z, Zeng X, Wang Q, Gao N (2021) Charge-reversal nanomedicine based on black phosphorus for the development of a novel photothermal therapy of oral cancer. Drug Deliv 28:700–708. https://doi.org/10.1080/10717544.2021.1909176
Liu L, Chen J, Cai X, Yao Z, Huang J (2019) Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg Oncol 31:90–97. https://doi.org/10.1016/j.suronc.2019.09.001
Liu Z, Shi J, Zhu B, Xu Q (2020) Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine 15:661–676. https://doi.org/10.2217/nnm-2019-0415
Liu J, Jiang X, Zou A, Mai Z, Huang Z, Sun L, Zhao J (2021) circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma progression via miR-142-5p/IGF2BP3 signaling. Can Res 81:344–355. https://doi.org/10.1158/0008-5472.CAN-20-0554
Lu Y, Zheng Z, Yuan Y, Pathak JL, Yang X, Wang L, Ye Z, Cho WC, Zeng M, Wu L (2021) The emerging role of exosomes in oral squamous cell carcinoma. Front Cell Dev Biol 9:324. https://doi.org/10.3389/fcell.2021.628103
Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y (2016) In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics 6:1844–1865. https://doi.org/10.7150/thno.15088
Ma C, Shi L, Huang Y, Shen L, Peng H, Zhu X, Zhou G (2017) Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer. Biomater Sci 5:494–501. https://doi.org/10.1039/C6BM00833J
Mackey MA, El-Sayed MA (2014) Chemosensitization of cancer cells via gold nanoparticle-induced cell cycle regulation. Photochem Photobiol 90:306–312. https://doi.org/10.1111/php.12226
Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584. https://doi.org/10.1038/nrd4591
Marcazzan S, Varoni EM, Blanco E, Lodi G, Ferrari M (2018) Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncol 76:1–7. https://doi.org/10.1016/j.oraloncology.2017.11.014
Melancon MP, Lu W, Zhong M, Zhou M, Liang G, Elliott AM, Hazle JD, Myers JN, Li C, Jason Stafford R (2011) Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 32:7600–7608. https://doi.org/10.1016/j.biomaterials.2011.06.039
Meulemans J, Delaere P, Vander Poorten V (2019) Photodynamic therapy in head and neck cancer: indications, outcomes, and future prospects. Curr Opin Otolaryngol Head Neck Surg 27:136–141. https://doi.org/10.1097/MOO.0000000000000521
Mohan A, Narayanan S, Balasubramanian G, Sethuraman S, Krishnan UM (2016) Dual drug loaded nanoliposomal chemotherapy: a promising strategy for treatment of head and neck squamous cell carcinoma. Eur J Pharm Biopharm 99:73–83. https://doi.org/10.1016/j.ejpb.2015.11.017
Montero PH, Patel SG (2015) Cancer of the oral cavity. Surg Oncol Clin North Am 24:491–508. https://doi.org/10.1016/j.soc.2015.03.006
Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27:2225–2238. https://doi.org/10.1021/acs.bioconjchem.6b00437
Nakashima T, Tomita H, Hirata A, Ishida K, Hisamatsu K, Hatano Y, Kanayama T, Niwa A, Noguchi K, Kato K, Miyazaki T, Tanaka T, Shibata T, Hara A (2017) Promotion of cell proliferation by the proto-oncogene DEK enhances oral squamous cell carcinogenesis through field cancerization. Cancer Med 6:2424–2439. https://doi.org/10.1002/cam4.1157
Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) EpCAM Is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Can Res 64:5818–5824. https://doi.org/10.1158/0008-5472.CAN-04-0754
Peng Q-S, Cheng Y-N, Zhang W-B, Fan H, Mao Q-H, Xu P (2020) circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis 11:1–18. https://doi.org/10.1038/s41419-020-2273-y
Rao L, Bu L-L, Cai B, Xu J-H, Li A, Zhang W-F, Sun Z-J, Guo S-S, Liu W, Wang T-H, Zhao X-Z (2016) Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28:3460–3466. https://doi.org/10.1002/adma.201506086
Rao L, Bu L-L, Ma L, Wang W, Liu H, Wan D, Liu J-F, Li A, Guo S-S, Zhang L, Zhang W-F, Zhao X-Z, Sun Z-J, Liu W (2018) Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angewandte Chem-Int Ed 57:986–991. https://doi.org/10.1002/anie.201709457
Rathinaraj P, Muthusamy G, Prasad NR, Gunaseelan S, Kim B, Zhu S (2020) Folate–gold–bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur J Drug Metab Pharmacokinet 45:285–296. https://doi.org/10.1007/s13318-019-00600-9
Ren T, Mei-Juan LI (2009) Research status and prospect of suicide gene therapy for malignant tumor. J Modern Oncol 17:2435–2437. https://doi.org/10.1007/s12013-014-9849-z
Ren S, Cheng X, Chen M, Liu C, Zhao P, Huang W, He J, Zhou Z, Miao L (2017) Hypotoxic and rapidly metabolic PEG-PCL-C3-ICG nanoparticles for fluorescence-guided photothermal/photodynamic therapy against OSCC. ACS Appl Mater Interfaces 9:31509–31518. https://doi.org/10.1021/acsami.7b09522
Rosenberger L, Ezquer M, Lillo-Vera F, Pedraza PL, Ortúzar MI, González PL, Figueroa-Valdés AI, Cuenca J, Ezquer F, Khoury M, Alcayaga-Miranda F (2019) Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-018-36855-6
Saiyin W, Wang D, Li L, Zhu L, Liu B, Sheng L, Li Y, Zhu B, Mao L, Li G, Zhu X (2014) Sequential release of autophagy inhibitor and chemotherapeutic drug with polymeric delivery system for oral squamous cell carcinoma therapy. Mol Pharm 11:1662–1675. https://doi.org/10.1021/mp5000423
Seynhaeve A, Dicheva BM, Hoving S, Koning GA, Hagen T (2013) Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging. J Control Release 172:30–340. https://doi.org/10.1016/j.jconrel.2013.08.034
Smyth MJ, Ngiow SF, Ribas A, Teng MWL (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158. https://doi.org/10.1038/nrclinonc.2015.209
Sturgis EM, Cinciripini PM (2007) Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 110:1429–1435. https://doi.org/10.1002/cncr.22963
Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X (2019) CD44-targeted magnetic nanoparticles kill head and neck squamous cell carcinoma stem cells in an alternating magnetic field. Int J Nanomed 14:7549–7560. https://doi.org/10.2147/IJN.S215087
Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M (2020) Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 8:7253–7263. https://doi.org/10.1039/D0TB01063D
Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z (2015) Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug Deliv 22:145–155. https://doi.org/10.3109/10717544.2014.887157
Tan G, Zhong Y, Yang L, Jiang Y, Liu J, Ren F (2020) A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem Eng J 390:124446. https://doi.org/10.1016/j.cej.2020.124446
Tarassoli SP, De Pinillos Bayona AM, Pye H, Mosse CA, Callan JF, Macrobert A, Mchale AP, Nomikou N (2016) Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy. Nanotechnology 28:055101. https://doi.org/10.1088/1361-6528/28/5/055101
Teraoka S, Kakei Y, Akashi M, Iwata E, Hasegawa T, Miyawaki D, Sasaki R, Komori T (2018) Gold nanoparticles enhance X-ray irradiation-induced apoptosis in head and neck squamous cell carcinoma in vitro. Biomed Rep 9:415–420. https://doi.org/10.3892/br.2018.1142
Tomita R, Sasabe E, Tomomura A, Yamamoto T (2020) Macrophagederived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK3β pathway. Oncol Rep 44:1905–1916. https://doi.org/10.3892/or.2020.7748
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA: A Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262
Tshering Vogel DW, Zbaeren P, Thoeny HC (2010) Cancer of the oral cavity and oropharynx. Cancer Imaging: the Official Publ Int Cancer Imaging Soc 10:62–72. https://doi.org/10.1102/1470-7330.2010.0008
Van Harten AM, Brakenhoff RH (2021) Targeted treatment of head and neck (pre)cancer: preclinical target identification and development of novel therapeutic applications. Cancers 13:2774. https://doi.org/10.3390/cancers13112774
Veigas F, Mahmoud YD, Merlo J, Rinflerch A, Girotti MR (2021) Immune checkpoints pathways in head and neck squamous cell carcinoma. Cancers 13:1018. https://doi.org/10.3390/cancers13051018
Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer H-R, Cupissol D, Peyrade F, Benasso M, Vynnychenko I, De Raucourt D, Bokemeyer C, Schueler A, Amellal N, Hitt R (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. New England J Med 359:1116–1127. https://doi.org/10.1056/NEJMoa0802656
Vigneswara V, Kong A (2018) Predictive biomarkers and EGFR inhibitors in squamous cell carcinoma of head and neck (SCCHN). Ann Oncol off J Eur Soc Med Oncol 29:794–796. https://doi.org/10.1093/annonc/mdy065
Wang B, Wang J-H, Liu Q, Huang H, Chen M, Li K, Li C, Yu X-F, Chu PK (2014) Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 35:1954–1966. https://doi.org/10.1016/j.biomaterials.2013.11.066
Wang Z-Q, Liu K, Huo Z-J, Li X-C, Wang M, Liu P, Pang B, Wang S-J (2015) A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnology 13:1–10. https://doi.org/10.1186/s12951-015-0116-2
Wang B-K, Yu X-F, Wang J-H, Li Z-B, Li P-H, Wang H, Song L, Chu PK, Li C (2016) Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 78:27–39. https://doi.org/10.1016/j.biomaterials.2015.11.025
Wang D, Xu X, Zhang K, Sun B, Wang L, Meng L, Liu Q, Zheng C, Yang B, Sun H (2017a) Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. Int J Nanomed 13:187–198. https://doi.org/10.2147/IJN.S150610
Wang Y, Wan G, Li Z, Shi S, Chen B, Li C, Zhang L, Wang Y (2017b) PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma. Int J Pharm 525:21–31. https://doi.org/10.1016/j.ijpharm.2017.04.027
Wang F, Wang M, Zhao L, Li Q (2019a) A new biosafe reactive oxygen species responsive nanoplatform for targeted oral squamous cell carcinoma therapy. Mater Express 9:1076–1081. https://doi.org/10.1166/mex.2019.1602
Wang H-H, Fu Z-G, Li W, Li Y-X, Zhao L-S, Wen L, Zhang J-J, Wen N (2019b) The synthesis and application of nano doxorubicin-indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma. Int J Nanomed 14:623. https://doi.org/10.2147/IJN.S217586
Wang M, Zhai Y, Ye H, Lv Q, Sun B, Luo C, Jiang Q, Zhang H, Xu Y, Jing Y, Huang L, Sun J, He Z (2019c) High co-loading capacity and stimuli-responsive release based on cascade reaction of self-destructive polymer for improved chemo-photodynamic therapy. ACS Nano 13:7010–7023. https://doi.org/10.1021/acsnano.9b02096
Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, Zhang Q, Ni YH, Wang J, Hu Q (2019d) A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci 7:5270–5282. https://doi.org/10.1039/C9BM01192G
Wang Y, Zhang W, Sun P, Cai Y, Xu W, Fan Q, Hu Q, Han W (2019e) A novel multimodal NIR-II nanoprobe for the detection of metastatic lymph nodes and targeting chemo-photothermal therapy in oral squamous cell carcinoma. Theranostics 9:391–404. https://doi.org/10.7150/thno.30268
Wang X, Li S, Liu H (2021) Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagn Photodyn Ther 34:102218. https://doi.org/10.1016/j.pdpdt.2021.102218
Wei Z, Yin X, Cai Y, Xu W, Song C, Wang Y, Zhang J, Kang A, Wang Z, Han W (2018) Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomed 13:1505–1524. https://doi.org/10.2147/ijn.S156984
Wei Z, Zou H, Liu G, Song C, Han WJBM (2021) Peroxidase-mimicking evodiamine/indocyanine green nanoliposomes for multimodal imaging-guided theranostics for oral squamous cell carcinoma. Bioactive Mater 6:2144–2157. https://doi.org/10.1016/j.bioactmat.2020.12.016
Weinberg F, Ramnath N, Nagrath D (2019) Reactive oxygen species in the tumor microenvironment: an overview. Cancers 11:1191. https://doi.org/10.3390/cancers11081191
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications—sciencedirect. J Control Release 200:138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
Wu T-T, Zhou S-H (2015) Nanoparticle-based targeted therapeutics in head-and-neck cancer. Int J Med Sci 12:187–200. https://doi.org/10.7150/ijms.10083
Wu YN, Yang LX, Shi XY, Li IC, Biazik JM, Ratinac KR, Chen DH, Thordarson P, Shieh DB, Braet F (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32:4565–4573. https://doi.org/10.1016/j.biomaterials.2011.03.006
Wu J, Cao J, Li X, Wu B, Zhang S (2020a) MicroRNA-345 functions as a tumor suppressor via targeting ZEB2 in oral squamous cell carcinoma. Arch Oral Biol 116:104732. https://doi.org/10.1016/j.archoralbio.2020.104732
Wu J, Guo Q, Zhang G, Zhao L, Lv Y, Wang J, Liu J, Shi W (2020b) Study on the targeted therapy of oral squamous cell carcinoma with a plasmid expressing PE38KDEL toxin under control of the SERPINB3 promoter. Cancer Med 9:2213–2222. https://doi.org/10.1002/cam4.2880
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv Drug Deliv Rev 65:121–138. https://doi.org/10.1016/j.addr.2012.09.041
Yan X, Chen YR, Song YF, Ye J, Yu JK (2020) Advances in the application of supramolecular hydrogels for stem cell delivery and cartilage tissue engineering. Front Bioeng Biotechnol 8:847. https://doi.org/10.3389/fbioe.2020.00847
Yang Y-T, Wang Y-F, Lai J-Y, Shen S-Y, Wang F, Kong J, Zhang W, Yang H-Y (2016) Long non-coding RNA UCA1 contributes to the progression of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway. Cancer Sci 107:1581–1589. https://doi.org/10.1111/cas.13058
Yao Q, Kou L, Tu Y, Zhu L (2018) MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol Sci 39:766–781. https://doi.org/10.1016/j.tips.2018.06.003
Yu D, Wang A, Huang H, Chen Y (2008) PEG-PBLG nanoparticle-mediated HSV-TK/GCV gene therapy for oral squamous cell carcinoma. Nanomedicine 3:813–821. https://doi.org/10.2217/17435889.3.6.813
Yue X-S, Murakami Y, Tamai T, Nagaoka M, Cho C-S, Ito Y, Akaike T (2010) A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials 31:5287–5296. https://doi.org/10.1016/j.biomaterials.2010.03.035
Zhang NN, Zhang LG, Liu ZN, Huang GL, Zhang L, Yi J, Yao L, Hu XH (2015) Therapeutic efficacy of paclitaxel and carboplatin via arterial or venous perfusion in rabbits with VX-2 tongue cancer. Int J Clin Exp Med 8: 4979–4988. https://pubmed.ncbi.nlm.nih.gov/26131070.
Zhang K, Guan X, Qiu Y, Wang D, Zhang X, Zhang H (2016) A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl Surf Sci 389:1208–1213. https://doi.org/10.1016/j.apsusc.2016.08.107
Zhang M, Liang J, Yang Y, Liang H, Li D (2020) Current trends of targeted drug delivery for oral cancer therapy. Front Bioeng Biotechnol 8:1417. https://doi.org/10.3389/fbioe.2020.618931
Zhen X, Cheng P, Pu K (2019) Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 15:1804105. https://doi.org/10.1002/smll.201804105
Zhou Z-H, Liang S-Y, Zhao T-C, Chen X-Z, Cao X-K, Qi M, Huang Y-Y, Ju W-T, Yang M, Zhu D-W, Pang Y-C, Zhong L-P (2021) Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J Nanobiotechnology 19:1–14. https://doi.org/10.1186/s12951-021-00901-9
Zhu J-Y, Zheng D-W, Zhang M-K, Yu W-Y, Qiu W-X, Hu J-J, Feng J, Zhang X-Z (2016) Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett 16:5895–5901. https://doi.org/10.1021/acs.nanolett.6b02786
Zuo J, Huo M, Wang L, Li J, Chen Y, Xiong P (2020) Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J Mater Chem B 8:9084–9093. https://doi.org/10.1039/d0tb01089h
Funding
This work was supported by funding from the National Natural Science Foundation of China under Grant Agreement No. 31970783. Author Hongjiao Li, Yao Zhang has received research support from Chongqing Medical University.
Author information
Authors and Affiliations
Contributions
HL designed and prepared the manuscript. YZ and MX contributed to data collection. HL and YZ contributed equally to this manuscript. All the authors have read and approved the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, H., Zhang, Y., Xu, M. et al. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 148, 2169–2186 (2022). https://doi.org/10.1007/s00432-022-04028-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00432-022-04028-8