Skip to main content

Advertisement

Log in

LZTFL1 suppresses gastric cancer cell migration and invasion through regulating nuclear translocation of β-catenin

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Our previous work identified leucine zipper transcription factor-like 1 (LZTFL1) as a novel tumor suppressor gene, with its expression correlated with survival outcome in gastric cancer (GC) patients. This study focuses on the role of LZTFL1 in GC aggression and metastasis as well as its underlying molecular mechanisms.

Method

LZTFL1 immunohistochemical (IHC) staining on 311 paired normal/cancer tissue arrays were used to reconfirm the clinical significance of LZTFL1 expression. Transwell chamber assays were used to determine migration and invasive ability of GC cells. Gelatin zymography was employed to investigate the matrix metalloproteinases (MMPs) activity in tumor cells. Co-immunoprecipitation and Duolink in situ proximity ligation assay were used to analyze the interaction between LZTFL1 and β-catenin and the cellular localization of the interaction.

Result

IHC results indicated that patients with high LZTFL1 expression had a longer overall survival time (58 months, 95 % CI 28–128 months) than patients with low LZTFL1 expression (27 months, 95 % CI 23–35 months; p < 0.01). The expression level of LZTFL1 is associated with the degree of cell differentiation. LZTFL1 is necessary and sufficient to inhibit the expression of molecular markers associated with epithelial–mesenchymal transition (EMT) and cellular phenotypes associated with tumor cell EMT including the migration, invasion, and the expression and activities of MMPs of tumor cells. LZTFL1 binds β-catenin in the cytoplasm of the cell and inhibited its nuclear translocation.

Conclusion

LZTFL1 suppresses GC cell EMT by inhibiting β-catenin nuclear translocation. Re-expression of LZTFL1 in GC cells may be a potential therapeutic means to prevent GC metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6979–6988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  • Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M et al (2009) Recent patterns in gastric cancer: a global overview. Int J Cancer 125:666–673

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  CAS  PubMed  Google Scholar 

  • Chan AO, Wong BC, Lan HY, Loke SL, Chan WK, Hui WM et al (2003) Deregulation of E-cadherin-catenin complex in precancerous lesions of gastric adenocarcinoma. J Gastroenterol Hepatol 18:534–539

    Article  CAS  PubMed  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163:847–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al (1989) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891

    Article  Google Scholar 

  • Di Croce L, Pelicci PG (2003) Tumour-associated hypermethylation: silencing E-cadherin expression enhances invasion and metastasis. Eur J Cancer 39:413–414

    Article  PubMed  Google Scholar 

  • Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C (2001) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30:4609–4621

    Article  Google Scholar 

  • Gheldof A, Berx G (2013) Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci 116:317–336

    Article  CAS  PubMed  Google Scholar 

  • Gomes LR, Terra LF, Sogayar MC, Labriola L (2011) Epithelial-mesenchymal transition: implications in cancer progression and metastasis. Curr Pharm Biotechnol 12:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Grabsch H, Sivakumar S, Gray S, Gabbert HE, Müller W (2010) HER2 expression in gastric cancer: rare, heterogeneous and of no prognostic value—conclusions from 924 cases of two independent series. Cell Oncol 32(1–2):57–65

    PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    CAS  PubMed  Google Scholar 

  • Hatsell S, Rowlands T, Hiremath M, Cowin P (2003) Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 8(2):145–158

    Article  PubMed  Google Scholar 

  • Hendriksen J, Jansen M, Brown CM, van der Velde H, van Ham M, Galjart N et al (2008) Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway. J Cell Sci 121:1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Hesson LB, Cooper WN, Latif F (2007) Evaluation of the 3p21.3 tumor-suppressor gene cluster. Oncogene 26:7283–7301

    Article  CAS  PubMed  Google Scholar 

  • Howe LR, Watanabe O, Leonard J, Brown AM (2003) Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res 63:1906–1913

    CAS  PubMed  Google Scholar 

  • Ieni A, Barresi V, Giuffrè G, Caruso RA, Lanzafame S, Villari L et al (2013) HER2 status in advanced gastric carcinoma: a retrospective multicentric analysis from Sicily. Oncol Lett 6:1591–1594

    PubMed Central  PubMed  Google Scholar 

  • Ji L, Minna JD, Roth JA (2005) 3p21.3 tumor suppressor cluster: prospects for translational applications. Future Oncol 1:79–92

    Article  CAS  PubMed  Google Scholar 

  • Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24:2137–2150

    Article  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiss H, Kedra D, Kiss C, Kost-Alimova M, Yang Y, Klein G et al (2001) The LZTFL1 gene is a part of a transcriptional map covering 250 kb within the common eliminated region 1 (C3CER1) in 3p21.3. Genomics 73:10–19

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Tsai PH, Kandaswami CC, Lee PP, Huang CJ, Hwang JJ et al (2011) Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci 102:815–827

    Article  CAS  PubMed  Google Scholar 

  • Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN et al (2001) Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med 345:725–730

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marion V, Stutzmann F, Gérard M, De Melo C, Schaefer E, Claussmann A et al (2012) Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet–Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet 49:317–321

    Article  PubMed  Google Scholar 

  • Mayer B, Johnson JP, Leitl F, Jauch KW, Heiss MM, Schildberg FW et al (1993) E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res 53:1690–1695

    CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Yamada S, Fuchs BC, Fujii T, Nakayama G, Sugimoto H et al (2014) Epithelial-to-mesenchymal transition predicts prognosis in clinical gastric cancer. J Surg Oncol 109:684–689

  • Niehrs C (2012) The complex world of WNT receptor signaling. Nat Rev Mol Cell Biol 13(12):767–779

    Article  CAS  PubMed  Google Scholar 

  • Nisticò P, Bissell MJ, Radisky DC (2012) Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 4(2):pii: a011908

    Article  Google Scholar 

  • Ohtsu A, Yoshida S, Saijo N (2006) Disparities in gastric cancer chemotherapy between the East and West. J Clin Oncol 24:2188–2196

    Article  PubMed  Google Scholar 

  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  CAS  PubMed  Google Scholar 

  • Orlichenko LS, Radisky DC (2008) Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 25:593–600

    Article  CAS  PubMed  Google Scholar 

  • Orsulic S, Huber O, Aberle H, Arnold S, Kemler R (1999) E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 112:1237–1245

    CAS  PubMed  Google Scholar 

  • Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y et al (2010) Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA 303:1729–1737

    Article  CAS  PubMed  Google Scholar 

  • Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS et al (1999) Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 59:4257–4260

    CAS  PubMed  Google Scholar 

  • Peleteiro B, Bastos A, Ferro A, Lunet N (2014) Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig Dis Sci. doi:10.1007/s10620-014-3063-0

  • Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER (1999) Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 154:325–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbluh J, Wang X, Hahn WC (2014) Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci 35(2):103–109

    CAS  PubMed  Google Scholar 

  • Rowlands TM, Pechenkina IV, Hatsell S, Cowin P (2004) Beta-catenin and cyclin D1: connecting development to breast cancer. Cell Cycle 3:145–148

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Morimoto I, Kusano M, Hosokawa M, Itoh F, Yanagihara K, Imai K et al (2001) Mutational analysis of the beta-catenin gene in gastric carcinomas. Tumor Biol 22:123–130

    Article  CAS  Google Scholar 

  • Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28:151–166

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV et al (2011) A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet 7:e1002358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  • Vinson C, Acharya A, Taparowsky EJ (2006) Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta 1759(1–2):4–12

    Article  CAS  PubMed  Google Scholar 

  • Wagner AD, Grothe W, Behl S, Kleber G, Grothey A, Haerting J et al (2005) Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev (2):CD004064. doi:10.1002/14651858.CD004064.pub3

  • Wang Q, Sun ZX, Allgayer H, Yang HS (2010) Downregulation of E-cadherin is an essential event in activating beta-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene 29:128–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei Q, Zhou W, Wang W, Gao B, Wang L, Cao J, Liu ZP (2010) Tumor-suppressive functions of leucine zipper transcription factor-like 1. Cancer Res 70:2942–2950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo DK, Kim HS, Lee HS, Kang YH, Yang HK, Kim WH (2001) Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines. Int J Cancer 5:108–113

    Article  Google Scholar 

  • Wu HW, Qin CY, Huang JL et al (2014) Correlations of β-catenin, Ki67 and Her-2/neu with gastric cancer. Asian Pac J Trop Med 7(4):257–261

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M et al (2003) Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22:891–898

    CAS  PubMed  Google Scholar 

  • Yoong J, Michael M, Leong T (2011) Targeted therapies for gastric cancer: current status. Drugs 71:1367–1384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China to Q.W. (Grant No. 81101581) and National Institute of Health (NIHRO1HL10947) and Cancer Prevention and Research Institute of Texas (CPRIT-RP120717) to Z.P.L.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Wei or Zhi-Ping Liu.

Additional information

Linbo Wang and Jufeng Guo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guo, J., Wang, Q. et al. LZTFL1 suppresses gastric cancer cell migration and invasion through regulating nuclear translocation of β-catenin. J Cancer Res Clin Oncol 140, 1997–2008 (2014). https://doi.org/10.1007/s00432-014-1753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1753-9

Keywords

Navigation