Skip to main content

Advertisement

Log in

Sodium taurocholate cotransporting polypeptide mediates dual actions of deoxycholic acid in human hepatocellular carcinoma cells: enhanced apoptosis versus growth stimulation

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The hydrophobic bile acid, deoxycholic acid (DC), can induce apoptosis in hepatocytes. The roles of DC and its transporter are not yet established in hepatocellular carcinoma (HCC) cells. We investigated DC-induced alterations in HCC cell growth, with a particular focus on the effect of the expression of bile acid (BA)-transporting Na+-dependent taurocholic cotransporting polypeptides (NTCPs).

Methods

We determined NTCP expression in four human HCC cell lines: Huh-BAT, Huh-7, SNU-761, and SNU-475. NTCP expression and apoptotic signaling cascades were examined by immunoblot analyses. Cell viability was assessed using the 3,4-(5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt assay. Wound healing and invasion assays were performed to evaluate cell migration and invasion abilities. Real-time polymerase chain reaction was performed to measure IL-8 expression levels. Nuclear factor kappa B (NF-κB) activity was evaluated by enzyme-linked immunosorbent assay.

Results

The HCC cell lines revealed varying NTCP expression levels, and DC treatment had dual effects, depending on NTCP expression. DC induced apoptosis in NTCP-positive HCC cells, especially under hypoxic conditions. In NTCP-negative HCC cells, simultaneous treatment with DC and cyclooxygenase inhibitor markedly decreased aggressive cellular behaviors via the inhibition of NF-κB/COX-2/IL-8 pathways.

Conclusion

Hydrophobic bile acid offers therapeutic potential for patients with advanced HCC via different mechanisms depending on NTCP expression levels within the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

Bile acid

DC:

Deoxycholic acid

HCC:

Hepatocellular carcinoma

NTCP:

Na+-dependent taurocholic cotransporting polypeptides

COX:

Cyclooxygenase

IL:

Interleukin

TACE:

Transarterial chemoembolization

CDC:

Chenodeoxycholate

DC:

Deoxycholate

GCDC:

Glycochenodeoxycholate

EGFR:

Epidermal growth factor receptor

TGR5:

G-protein-coupled bile acid receptor

FXR:

Farnesoid-X-receptor

NFκB:

Nuclear factor kappa B

DMEM:

Dulbecco’s Modified Eagle’s Medium

RPMI:

Roswell Park Memorial Institute

FBS:

Fetal bovine serum

eIF2α:

Eukaryotic initiation factor 2α

JNK:

c-Jun N-terminal Kinase

siRNAs:

Small interfering RNA

MTS:

3,4-(5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt

ELISA:

Enzyme-linked immunosorbent assay

HBSS:

Hank’s balanced salt solution

PCR:

Polymerase chain reaction

RNA:

Ribonucleic acid

cDNA:

Complementary deoxyribonucleic acid

MoMLV:

Moloney murine leukemia virus

mRNA:

Messenger RNA

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

SD:

Standard deviation

ER:

Endoplasmic reticulum

Mcl-1:

Induced myeloid leukemia cell differentiation protein

References

  • Alrefai WA, Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24(10):1803–1823. doi:10.1007/s11095-007-9289-1

    Article  CAS  PubMed  Google Scholar 

  • Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85(8):863–871. doi:10.1007/s00204-011-0648-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breinig M, Schirmacher P, Kern MA (2007) Cyclooxygenase-2 (COX-2)-a therapeutic target in liver cancer? Curr Pharm Des 13(32):3305–3315. doi:10.2174/138161207782360627

    Article  CAS  PubMed  Google Scholar 

  • Cencioni MT, Chiurchiu V, Catanzaro G, Borsellino G, Bernardi G, Battistini L, Maccarrone M (2010) Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS ONE 5(1):e8688. doi:10.1371/journal.pone.0008688

    Article  PubMed Central  PubMed  Google Scholar 

  • Cervello M, Montalto G (2006) Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol 12 (32):5113–5121. http://www.wjgnet.com/1007-9327/12/5113.asp

    Google Scholar 

  • Cui J, Huang L, Zhao A, Lew JL, Yu J, Sahoo S, Meinke PT, Royo I, Pelaez F, Wright SD (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 278(12):10214–10220. doi:10.1074/jbc.M209323200

    Article  CAS  PubMed  Google Scholar 

  • Fukase K, Ohtsuka H, Onogawa T, Oshio H, Ii T, Mutoh M, Katayose Y, Rikiyama T, Oikawa M, Motoi F, Egawa S, Abe T, Unno M (2008) Bile acids repress E-cadherin through the induction of snail and increase cancer invasiveness in human hepatobiliary carcinoma. Cancer Sci 99(9):1785–1792. doi:10.1111/j.1349-7006.2008.00898.x

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta RM, van Mil SW, Oldenburg B, Siersema PD, Klomp LW, van Erpecum KJ (2010) Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta 1801(7):683–692. doi:10.1016/j.bbalip.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  • Gorman AM, Healy SJ, Jager R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134(3):306–316. doi:10.1016/j.pharmthera.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  • Gumpricht E, Dahl R, Yerushalmi B, Devereaux MW, Sokol RJ (2002) Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by non-mitochondrial pathways. J Biol Chem 277(28):25823–25830. doi:10.1074/jbc.M112305200

    Article  CAS  PubMed  Google Scholar 

  • Gwak GY, Yoon JH, Kim KM, Lee HS, Chung JW, Gores GJ (2005) Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J Hepatol 42(3):358–364. doi:10.1016/j.jhep.2004.11.020

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimoto R, El-Deiry W, Gores GJ (2001) The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 276(42):38610–38618. doi:10.1074/jbc.M105300200

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ (2004) Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 279(1):51–60. doi:10.1074/jbc.M309476200

    Article  CAS  PubMed  Google Scholar 

  • Hill MJ (1990) Bile flow and colon cancer. Mutat Res 238(3):313–320

    Article  CAS  PubMed  Google Scholar 

  • Hohenester S, Gates A, Wimmer R, Beuers U, Anwer MS, Rust C, Webster CR (2010) Phosphatidylinositol-3-kinase p110gamma contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J Hepatol 53(5):918–926. doi:10.1016/j.jhep.2010.05.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen OM, MacLennan R, Wahrendorf J (1982) Diet, bowel function, fecal characteristics, and large bowel cancer in Denmark and Finland. Nutr Cancer 4(1):5–19. doi:10.1080/01635588209513733

    Article  CAS  PubMed  Google Scholar 

  • Kawamori T, Rao CV, Seibert K, Reddy BS (1998) Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 58(3):409–412

    CAS  PubMed  Google Scholar 

  • Knisely AS, Strautnieks SS, Meier Y, Stieger B, Byrne JA, Portmann BC, Bull LN, Pawlikowska L, Bilezikci B, Ozcay F, Laszlo A, Tiszlavicz L, Moore L, Raftos J, Arnell H, Fischler B, Nemeth A, Papadogiannakis N, Cielecka-Kuszyk J, Jankowska I, Pawlowska J, Melin-Aldana H, Emerick KM, Whitington PF, Mieli-Vergani G, Thompson RJ (2006) Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44(2):478–486. doi:10.1002/hep.21287

    Article  CAS  PubMed  Google Scholar 

  • Kubo F, Ueno S, Hiwatashi K, Sakoda M, Kawaida K, Nuruki K, Aikou T (2005) Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Ann Surg Oncol 12(10):800–807. doi:10.1245/ASO.2005.07.015

    Article  PubMed  Google Scholar 

  • Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113(4):1295–1305. doi:10.1053/gast.1997.v113.pm9322525

    Article  CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342. doi:10.1053/j.gastro.2003.06.005

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Ku JL, Park YJ, Lee KU, Kim WH, Park JG (1999) Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol 5 (4):289–295. http://www.wjgnet.com/1007-9327/full/v5/i4/289.htm

  • Lee HY, Crawley S, Hokari R, Kwon S, Kim YS (2010) Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3 K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int J Oncol 36(4):941–953. doi:10.3892/ijo_00000573

    CAS  PubMed  Google Scholar 

  • Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T (2003) Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 38(3):756–768. doi:10.1053/jhep.2003.50380

    Article  CAS  PubMed  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. doi:10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  • Liao M, Zhao J, Wang T, Duan J, Zhang Y, Deng X (2011) Role of bile salt in regulating Mcl-1 phosphorylation and chemoresistance in hepatocellular carcinoma cells. Mol Cancer 10:44. doi:10.1186/1476-4598-10-44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. doi:10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  • Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH (2008) Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Mol Cell Endocrinol 289(1–2):49–59. doi:10.1016/j.mce.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42(9):3858–3863

    CAS  PubMed  Google Scholar 

  • Nakao S, Ogtata Y, Shimizu E, Yamazaki M, Furuyama S, Sugiya H (2002) Tumor necrosis factor alpha (TNF-alpha)-induced prostaglandin E2 release is mediated by the activation of cyclooxygenase-2 (COX-2) transcription via NFkappaB in human gingival fibroblasts. Mol Cell Biochem 238(1–2):11–18. doi:10.1023/A:1019927616000

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, Labonte MJ, Wilson PM, Ladner RD, Lenz HJ (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128(9):2038–2049. doi:10.1002/ijc.25562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JG, Lee JH, Kang MS, Park KJ, Jeon YM, Lee HJ, Kwon HS, Park HS, Yeo KS, Lee KU et al (1995) Characterization of cell lines established from human hepatocellular carcinoma. Int J Cancer 62(3):276–282. doi:10.1002/ijc.2910620308

    Article  CAS  PubMed  Google Scholar 

  • Park SE, Lee SW, Hossain MA, Kim MY, Kim MN, Ahn EY, Park YC, Suh H, Kim GY, Choi YH, Kim ND (2008) A chenodeoxycholic derivative, HS-1200, induces apoptosis and cell cycle modulation via Egr-1 gene expression control on human hepatoma cells. Cancer Lett 270(1):77–86. doi:10.1016/j.canlet.2008.04.038

    Article  CAS  PubMed  Google Scholar 

  • Perez MJ, Briz O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15(14):1677–1689. doi:10.3748/wjg.15.1677

    Article  CAS  PubMed  Google Scholar 

  • Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, Farrow S, Howells L (1999) Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18(44):6013–6020. doi:10.1038/sj.onc.1202980

    Article  CAS  PubMed  Google Scholar 

  • Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis 29(1):37–44. doi:10.1159/000324126

    Article  PubMed  Google Scholar 

  • Ren Y, Poon RT, Tsui HT, Chen WH, Li Z, Lau C, Yu WC, Fan ST (2003) Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clin Cancer Res 9(16):5996–6001

    CAS  PubMed  Google Scholar 

  • Sarfaraz S, Siddiqui IA, Syed DN, Afaq F, Mukhtar H (2008) Guggulsterone modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in SENCAR mice. Carcinogenesis 29(10):2011–2018. doi:10.1093/carcin/bgn180

    Article  CAS  PubMed  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. doi:10.1038/sj.embor.7400779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666. doi:10.1126/science.287.5453.664

    Article  CAS  PubMed  Google Scholar 

  • Venook AP, Papandreou C, Furuse J, de Guevara LL (2010) The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15(Suppl 4):5–13. doi:10.1634/theoncologist.2010-S4-05

    Article  PubMed  Google Scholar 

  • Walters JR (2000) Bile acids are physiological ligands for a nuclear receptor. Gut 46(3):308–309

    Article  CAS  PubMed  Google Scholar 

  • Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48(5):1632–1643. doi:10.1002/hep.22519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741. doi:10.1158/1078-0432.CCR-07-4843

    Article  CAS  PubMed  Google Scholar 

  • Wenniger M, Beuers U (2010) Bile salts and cholestasis. Dig Liver Dis 42(6):409–418. doi:10.1016/j.dld.2010.03.015

    Article  Google Scholar 

  • Wu J, Xia C, Meier J, Li S, Hu X, Lala DS (2002) The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol 16(7):1590–1597. doi:10.1210/me.16.7.1590

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Osawa S, Hamaya Y, Furuta T, Hishida A, Kajimura M, Ikuma M (2010) Guggulsterone suppresses bile acid-induced and constitutive caudal-related homeobox 2 expression in gut-derived adenocarcinoma cells. Anticancer Res 30(6):1953–1960

    CAS  PubMed  Google Scholar 

  • Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W (2007) Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 67(3):863–867. doi:10.1158/0008-5472.CAN-06-1078

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ (2001) Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33(3):616–626. doi:10.1053/jhep.2001.22702

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ (2002a) Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 122(4):985–993

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Werneburg NW, Higuchi H, Canbay AE, Kaufmann SH, Akgul C, Edwards SW, Gores GJ (2002b) Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Res 62(22):6500–6505

    CAS  PubMed  Google Scholar 

  • Yu SJ, Yoon JH, Yang JI, Cho EJ, Kwak MS, Jang ES, Lee JH, Kim YJ, Lee HS, Kim CY (2012) Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition. J Bioenerg Biomembr 44(1):101–115. doi:10.1007/s10863-012-9416-5

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Zhou L, Li M, Li ZW, Wang DS, Zhang SG (2013) The Notch1/cyclooxygenase-2/Snail/E-cadherin pathway is associated with hypoxia-induced hepatocellular carcinoma cell invasion and migration. Oncol Rep 29(1):362–370. doi:10.3892/or.2012.2103

    CAS  PubMed  Google Scholar 

  • Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K, Denk H, Trauner M (2005) Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int 25(2):367–379. doi:10.1111/j.1478-3231.2005.01033.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 20100007381) and by the Liver Research Foundation of Korea.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hwan Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, E.S., Yoon, JH., Lee, SH. et al. Sodium taurocholate cotransporting polypeptide mediates dual actions of deoxycholic acid in human hepatocellular carcinoma cells: enhanced apoptosis versus growth stimulation. J Cancer Res Clin Oncol 140, 133–144 (2014). https://doi.org/10.1007/s00432-013-1554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1554-6

Keywords

Navigation