Skip to main content

Advertisement

Log in

Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 12:948–958

    Article  CAS  Google Scholar 

  2. Singh V, Pal A, Darokar MP (2015) A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic Biol Med 87:48–57

    Article  CAS  PubMed  Google Scholar 

  3. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  4. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sachse F, Becker K, von Eiff C, Metze D, Rudack C (2010) Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy 65:1430–1437

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, Kong HH, Amagai M, Nagao K (2015) Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42:756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, Förster-Ruhrmann U, Kowalski ML, Olszewska-Ziąber A et al (2016) Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137:1449–1456

    Article  CAS  PubMed  Google Scholar 

  8. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pietrocola G, Nobile G, Rindi S, Speziale P (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, Villaruz AE, Cheung GY et al (2013) Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bröker BM, Mrochen D, Péton V (2016) The T Cell Response to Staphylococcus. Pathog Aureus 17;5(1)

  12. Cho SH, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DY (2001) Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol 116:658–663

    Article  CAS  PubMed  Google Scholar 

  13. Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Itoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, Tsuji T (2010) Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol 47:932–938

    Article  CAS  PubMed  Google Scholar 

  15. Koziel J, Potempa J (2013) Protease-armed bacteria in the skin. Cell Tissue Res 351:325–337

    Article  CAS  PubMed  Google Scholar 

  16. Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    Article  CAS  PubMed  Google Scholar 

  18. McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN, Missiakas DM, Schneewind O (2012) Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 80:3389–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G, Kubes P (2015) Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 26:6673

    Article  CAS  Google Scholar 

  20. Goerke C, Wolz C (2004) Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection. Int J Med Microbiol 294:195–202

    Article  CAS  PubMed  Google Scholar 

  21. Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, Kumar K, Sebra R, Deikus G, Attie O, Rose H, Lewis M, Fulmer Y, Bashir A, Kasarskis A, Schadt EE, Richardson AR, Torres VJ, Shopsin B, van Bakel H (2018) Genome plasticity of agr-defective Staphylococcus aureus during clinical infection. Infect Immun. https://doi.org/10.1128/IAI.00331-18 (Epub ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S (2004) The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4:3034–3047

    Article  CAS  PubMed  Google Scholar 

  23. George EA, Muir TW (2007) Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem 8:847–855

    Article  CAS  PubMed  Google Scholar 

  24. Bronner S, Monteil H, Prévost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200

    Article  CAS  PubMed  Google Scholar 

  25. Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bayer MG, Heinrichs JH, Cheung AL (1996) The molecular architecture of the sar locus in Staphylococcus aureus. J Bacteriol 178:4563–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arya R, Princy SA (2013) An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 8:1339–1353

    Article  CAS  PubMed  Google Scholar 

  28. Chien Y, Manna AC, Projan SJ, Cheung AL (1999) SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem 274:37169–37176

    Article  CAS  PubMed  Google Scholar 

  29. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rogasch K, Ruhmling V, Pane-Farre J, Hoper D, Weinberg C, Fuchs S, Schmudde M, Broker BM, Wolz C, Hecker M, Engelmann S (2006) Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188:7742–7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Q, Yeo WS, Bae T (2016) The SaeRS two-component system of Staphylococcus aureus. Genes (Basel) 7(10):81

    Article  CAS  Google Scholar 

  32. Steinhuber A, Goerke C, Bayer MG, Döring G, Wolz C (2003) Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on the expression of virulence factors. J Bacteriol 185:6278–6286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giraudo AT, Calzolari A, Cataldi AA, Bogni C, Nagel R (1999) The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett 177:15–22

    Article  CAS  PubMed  Google Scholar 

  34. Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C (2008) The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol 190:3419–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Novick RP, Jiang D (2003) The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149:2709–2717

    Article  CAS  PubMed  Google Scholar 

  36. Jonsson IM, Arvidson S, Foster S, Tarkowski A (2004) Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect Immun 72:6106–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bischoff M, Entenza JM, Giachino P (2001) Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 183:5171–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J (2009) Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 390:361–371

    Article  CAS  PubMed  Google Scholar 

  40. Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150:217–228

    Article  CAS  PubMed  Google Scholar 

  41. Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler MJ (2003) The Staphostatin–staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. Biol Chem 278:40959–40966

    Article  CAS  Google Scholar 

  42. Kantyka T, Shaw NL, Potempa J (2015) Staphopain A. Handb Proteolytic Enzymes 2:2150–2157

    Google Scholar 

  43. Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263:2664–2667

    CAS  PubMed  Google Scholar 

  44. Ohbayashi T, Irie A, Murakami Y, Nowak M, Potempa J, Nishimura Y, Shinohara M, Imamura T (2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157:786–792

    Article  CAS  PubMed  Google Scholar 

  45. Drapeau GR (1978) Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol 136:607–613

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Newsom SW (2008) Ogston’s coccus. J Hosp Infect 70:369–372

    Article  CAS  PubMed  Google Scholar 

  47. Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG (2013) The staphylococcal toxin panton-valentine leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594

    Article  CAS  PubMed  Google Scholar 

  48. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383

    Article  CAS  PubMed  Google Scholar 

  49. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJ, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JA, de Haas CJ, Horswill AR, van Kessel KP, Rooijakkers SH (2012) Staphylococcus aureus staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31:3607–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Potempa J, Watorek W, Travis J (1986) The inactivation of human plasma alpha 1-proteinase inhibitor by proteinases from Staphylococcus aureus. J Biol Chem 261:14330–14334

    CAS  PubMed  Google Scholar 

  51. Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, Dubin G, Garred P, Shaw LN, Blom AM (2014) Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 6:31–46

    Article  CAS  PubMed  Google Scholar 

  52. Dubin G, Krajewski M, Popowicz G, Stec-Niemczyk J, Bochtler M, Potempa J, Dubin A, Holak TA (2003) A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry 42:13449–13456

    Article  CAS  PubMed  Google Scholar 

  53. Massimi I, Park E, Rice K, Muller-Esterl W, Sauder D, McGavin MJ (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 277:41770–41777

    Article  CAS  PubMed  Google Scholar 

  54. Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM (2012) Galectin-3 binds neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 14:1657–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K, Hayashi K, Simpson AJ, Rossi AG, Haslett C, Sethi T (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elmwall J, Kwiecinski J, Na M, Ali AA, Osla V, Shaw LN, Wang W, Sävman K, Josefsson E, Bylund J, Jin T, Welin A, Karlsson A (2017) Galectin-3 Is a target for proteases involved in the virulence of Staphylococcus aureus. Infect Immun 85:e00177–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kolar SL, Ibarra JA, Rivera FE, Mootz JM, Davenport JE, Stevens SM, Horswill AR, Shaw LN (2013) Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2:18–34

    Article  CAS  PubMed  Google Scholar 

  58. Prasad L, Leduc Y, Hayakawa K, Delbaere LT (2004) The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 60:256–259

    Article  CAS  PubMed  Google Scholar 

  59. Rice K, Peralta R, Bast D, de Azavedo J, McGavin MJ (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prokesová L, Potuzníková B, Potempa J, Zikán J, Radl J, Hachová L, Baran K, Porwit-Bobr Z, John C (1992) Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunol Lett 31:259–265

    Article  PubMed  Google Scholar 

  61. Ryan MH, Petrone D, Nemeth JF, Barnathan E, Björck L, Jordan RE (2008) Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 45:1837–1846

    Article  CAS  PubMed  Google Scholar 

  62. Von Pawel-Rammingen U (2012) Streptococcal IdeS and its impact on immune response and inflammation. J Innate Immun 4:132–140

    Article  CAS  Google Scholar 

  63. Zhang L, Jacobsson K, Ström K, Lindberg M, Frykberg L (1999) Staphylococcus aureus expresses a cell surface protein that binds both IgG and β2-glycoprotein I. Microbiology 145:177–183

    Article  CAS  PubMed  Google Scholar 

  64. Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernadó P et al (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE (2009) Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci USA 106:17864–17869

    Article  PubMed  Google Scholar 

  66. Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS (2016) A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol Lett 172:29–39

    Article  CAS  PubMed  Google Scholar 

  67. Berti AD, Shukla N, Rottier AD, McCrone JS, Turner HM, Monk IR, Baines SL, Howden BP, Proctor RA, Rose WE (2018) Daptomycin selects for genetic and phenotypic adaptations leading to antibiotic tolerance in MRSA. J Antimicrob Chemother 73:2030–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang B, McHugh BJ, Qureshi A, Campopiano DJ, Clarke DJ, Fitzgerald JR, Dorin JR, Weller R, Davidson DJ (2017) IL-1β-induced protection of keratinocytes against Staphylococcus aureus-secreted proteases is mediated by human β-defensin 2. J Invest Dermatol 37:95–105

    Article  CAS  Google Scholar 

  69. Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, Moll I, Brandner JM (2008) Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol 128:906–916

    Article  CAS  PubMed  Google Scholar 

  70. Hirasawa Y, Takai T, Nakamura T, Mitsuishi K, Gunawan H, Suto H, Ogawa T, Wang XL, Ikeda S, Okumura K, Ogawa H (2010) Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol 130:614–617

    Article  CAS  PubMed  Google Scholar 

  71. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4:e00537–e00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abe T, Sugano E, Saigo Y, Tamai M (2003) Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules. Invest Ophthalmol Vis Sci 44:4097e104

    Article  Google Scholar 

  73. Geissler S, Götz F, Kupke T (1996) Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178:284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G (2014) Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 28:1780–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney SJ, Jones A, Russell HH, Turner C, Cohen J, Faulkner L, Sriskandan S (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192:783–790

    Article  CAS  PubMed  Google Scholar 

  76. Zinkernagel AS, Peyssonnaux C, Johnson RS, Nizet V (2008) Pharmacologic augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the bactericidal capacity of phagocytes. J Infect Dis 197:214–217

    Article  CAS  PubMed  Google Scholar 

  77. Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2:1148–1165

    Article  CAS  Google Scholar 

  78. Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR (2002) Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermatol 118:845–850

    Article  CAS  PubMed  Google Scholar 

  79. Getsios S, Amargo EV, Dusek RL, Ishii K, Sheu L, Godsel LM, Green KJ (2004) Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation 72:419–433

    Article  CAS  PubMed  Google Scholar 

  80. Lisa RWP, Delia MG, Markus W, Carleen MC (2000) Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect Immun 68:3048–3052

    Article  Google Scholar 

  81. Nishifuji K, Sugai M, Amagai M (2008) Staphylococcal exfoliative toxins: “molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 49:21–31

    Article  CAS  PubMed  Google Scholar 

  82. Pimentel de Araujo F, Tinelli M, Battisti A, Ercoli A, Anesi A, Pantosti A, Monaco M (2018) An outbreak of skin infections in neonates due to a Staphylococcus aureus strain producing the exfoliative toxin A. Infection 46:49–54

    Article  CAS  PubMed  Google Scholar 

  83. Vath GM, Earhart CA, Monie DD, Iandolo JJ, Schlievert PM, Ohlendorf DH (1999) The crystal structure of exfoliative toxin B: a superantigen with enzymatic activity. Biochemistry 38:10239–10246

    Article  CAS  PubMed  Google Scholar 

  84. Dubin G (2002) Extracellular proteases of Staphylococcus spp. Biol Chem 383:1075–1086

    Article  CAS  PubMed  Google Scholar 

  85. Hanakawa Y, Selwood T, Woo D, Lin C, Schechter NM, Stanley JR (2003) Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J Invest Dermatol 121:383–389

    Article  CAS  PubMed  Google Scholar 

  86. Ladhani S, Poston SM, Joannou CL, Evans RW (1999) Staphylococcal scalded skin syndrome: exfoliative toxin A (ETA) induces serine protease activity when combined with A431 cells. Acta Paediatr 88:776–779

    Article  CAS  PubMed  Google Scholar 

  87. Katayama Y, Baba T, Sekine M, Fukuda M, Hiramatsu K (2013) Betahemolysin promotes skin colonization by Staphylococcus aureus. J Bacteriol 195:1194–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310

    Article  CAS  PubMed  Google Scholar 

  89. Zdzalik M, Karim AY, Wolski K, Buda P, Wojcik K, Brueggemann S, Wojciechowski P, Eick S, Calander AM et al (2012) Prevalence of genes encoding extracellular proteases in Staphylococcus aureus—important targets triggering immune response in vivo. FEMS Immunol Med Microbiol 66:220–229

    Article  CAS  PubMed  Google Scholar 

  90. Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69:1521–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Holtfreter S, Nguyen TT, Wertheim H, Steil L, Kusch H, Truong QP, Engelmann S, Hecker M, Völker U, van Belkum A, Bröker BM (2009) Human immune proteome in experimental colonization with Staphylococcus aureus. Clin Vaccine Immunol 16:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Popowicz GM, Dubin G, Stec-Niemczyk J, Czarny A, Dubin A, Potempa J, Holak TA (2006) Functional and structural characterization of Spl proteases from Staphylococcus aureus. J Mol Biol 358:270–279

    Article  CAS  PubMed  Google Scholar 

  93. Zdzalik M, Kalinska M, Wysocka M, Stec-Niemczyk J, Cichon P, Stach N, Gruba N, Stennicke HR, Jabaiah A et al (2013) Biochemical and structural characterization of SplD protease from Staphylococcus aureus. PLoS One 8:e76812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayashida A, Bartlett AH, Foster TJ, Park PW (2009) Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 174:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nygaard TK, Pallister KB, Ruzevich P, Griffith S, Vuong C, Voyich JM (2010) SaeR binds a consensus sequence within virulence gene promoters to advance USA300 pathogenesis. J Infect Dis 201:241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diep BA, Afasizheva A, Le HN, Kajikawa O, Matute-Bello G, Tkaczyk C, Sellman B, Badiou C, Lina G, Chambers HF (2013) Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis 208:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pustelny K, Stach N, Wladyka B, Dubin A, Dubin G (2014) Evaluation of P1′ substrate specificity of staphylococcal SplB protease. Acta Biochim Pol 61:149–152

    Article  PubMed  Google Scholar 

  98. Stec-Niemczyk J, Pustelny K, Kisielewska M, Bista M, Boulware KT, Stennicke HR, Thogersen IB, Daugherty PS et al (2009) Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Biochem J 419:555–564

    Article  CAS  PubMed  Google Scholar 

  99. Dubin G, Stec-Niemczyk J, Kisielewska M, Pustelny K, Popowicz GM, Bista M, Kantyka T, Boulware KT, Stennicke HR, Czarna A et al (2008) Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J Mol Biol 379:343–356

    Article  CAS  PubMed  Google Scholar 

  100. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K et al (2016) Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 9:492–500

    Google Scholar 

  101. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K, Michalik S, Kumpfmüller J, Tischer S et al (2017) Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 139:492–500

    Article  CAS  PubMed  Google Scholar 

  102. Pang YY, Schwartz J, Thoendel M, Ackermann LW, Horswill AR, Nauseef WM (2010) agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun 2:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kebaier C, Chamberland RR, Allen IC, Gao X, Broglie PM, Hall JD, Jania C, Doerschuk CM, Tilley SL, Duncan JA (2012) Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 205:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Paharik AE, Salgado-Pabon W, Meyerholz DK, White MJ, Schlievert PM, Horswill AR (2016) The Spl serine proteases modulate Staphylococcus aureus protein production and virulence in a rabbit model of pneumonia mSphere 1(5)

  105. O’Brien L, Kerrigan SW, Kaw G, Hogan M, Penadés J, Litt D, Fitzgerald DJ, Foster TJ, Cox D (2002) Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 44:1033–1044

    Article  PubMed  Google Scholar 

  106. Davies JR, Kirkham S, Svitacheva N, Thornton DJ, Carlstedt I (2007) MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. Int J Biochem Cell Biol 39:1943–1954

    Article  CAS  PubMed  Google Scholar 

  107. Blalock TD, Spurr-Michaud SJ, Tisdale AS, Gipson IK (2008) Release of membrane-associated mucins from ocular surface epithelia. Invest Ophthalmol Vis Sci 49:1864–1871

    Article  PubMed  PubMed Central  Google Scholar 

  108. Govindarajan B, Menon BB, Spurr-Michaud S, Rastogi K, Gilmore MS, Argüeso P, Gipson IK (2012) A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier. PLoS One 7:e32418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gipson IK, Spurr-Michaud S, Tisdale A, Menon BB (2014) Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS One 9:e100393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, Batra SK (2014) MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J 28:4183–4199

    Article  CAS  PubMed  Google Scholar 

  111. Belyi Y, Rybolovlev I, Polyakov N, Chernikova A, Tabakova I, Gintsburg A (2018) Staphylococcus aureus surface protein G is an immunodominant protein and a possible target in an anti-biofilm drug development. Open Microbiol J 12:94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ewa B, Maciej W, Marcin S, Grzegorz D, Michał Z, Jan P, Józef O (2012) The development of first Staphylococcus aureus SplB protease inhibitors: phosphonic analogues of glutamine. Bioorg Med Chem Lett 22:5574–5578

    Article  CAS  PubMed  Google Scholar 

  113. Bachert C, van Steen K, Zhang N, Holtappels G, Cattaert T, Maus B, Buhl R, Taube C, Korn S, Kowalski M, Bousquet J, Howarth P (2012) Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma. J Allergy Clin Immunol 130:376–381

    Article  CAS  PubMed  Google Scholar 

  114. Huvenne W, Hellings PW, Bachert C (2013) Role of staphylococcal superantigens in airway disease. Int Arch Allergy Immunol 161:304–314

    Article  CAS  PubMed  Google Scholar 

  115. Teufelberger AR, Nordengrün M, Braun H, Maes T, De Grove K, Holtappels G, O’Brien C, Provoost S, Hammad H, Gonçalves A et al (2018) The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. J Allergy Clin Immunol 141:549–559

    Article  CAS  PubMed  Google Scholar 

  116. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 109:1673–1678

    Article  PubMed  Google Scholar 

  117. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56

    Article  CAS  PubMed  Google Scholar 

  118. van Helden MJ, Lambrecht BN (2013) Dendritic cells in asthma. Curr Opin Immunol 25:745–754

    Article  CAS  PubMed  Google Scholar 

  119. Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H (2009) IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol 123:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B (2011) IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol 41:1675–1686

    Article  CAS  PubMed  Google Scholar 

  121. Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JA, Nemery B, Tournoy KG, Joos GF (2010) Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huvenne W, Callebaut I, Plantinga M, Vanoirbeek JA, Krysko O, Bullens DM, Gevaert P, Van Cauwenberge P, Lambrecht BN, Ceuppens JL, Bachert C, Hellings PW (2010) Staphylococcus aureus enterotoxin B facilitates allergic sensitization in experimental asthma. Clin Exp Allergy 40:1079–1090

    Article  CAS  PubMed  Google Scholar 

  123. Krysko O, Maes T, Plantinga M, Holtappels G, Imiru R, Vandenabeele P, Joos G, Krysko DV, Bachert C (2013) The adjuvant-like activity of staphylococcal enterotoxin B in a murine asthma model is independent of IL-1R signaling. Allergy 68:446–453

    Article  CAS  PubMed  Google Scholar 

  124. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsui K, Nishikawa A (2012) Peptidoglycan from Staphylococcus aureus induces TH2 immune response in mice. J Investig Allergol Clin Immunol 22:80–86

    CAS  PubMed  Google Scholar 

  126. Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL et al (2009) Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183:6708–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boitano S, Flynn AN, Schulz SM, Hoffman J, Price TJ, Vagner J (2011) Potent agonists of the protease activated receptor 2 (PAR2). J Med Chem 54:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. de Boer JD, Van’t Veer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, Roelofs JJ5, van der Poll T (2014) Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun 20:618–625

    Article  CAS  PubMed  Google Scholar 

  129. Takai T, Kato T, Ota M, Yasueda H, Kuhara T, Okumura K, Ogawa H (2005) Recombinant Der p 1 and Der f 1 with in vitro enzymatic activity to cleave human CD23, CD25 and alpha1-antitrypsin, and in vivo IgE-eliciting activity in mice. Int Arch Allergy Immunol 137:194–200

    Article  CAS  PubMed  Google Scholar 

  130. Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M, Krauss-Etschmann S, Koller B, Reinhardt D, Roscher AA, Roos D, Griese M (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430

    Article  CAS  PubMed  Google Scholar 

  131. Rieneck K, Renneberg J, Diamant M, Gutschik E, Bendtzen K (1997) Molecular cloning and expression of a novel Staphylococcus aureus antigen. Biochim Biophys Acta 1350:128–132

    Article  CAS  PubMed  Google Scholar 

  132. Stach N, Kalinska M, Zdzalik M, Kitel R, Karim A, Serwin K, Rut W, Larsen K, Jabaiah A, Firlej M, Wladyka B, Daugherty P, Stennicke H, Drag M, Potempa J, Dubin G (2018) Unique substrate specificity of SplE serine protease from Staphylococcus aureus. Structure 26:572–579.e4

    Article  CAS  PubMed  Google Scholar 

  133. Banbula A, Potempa J, Travis J, Fernandez-Catalán C, Mann K, Huber R, Bode W, Medrano F (1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure 6:1185–1193

    Article  CAS  PubMed  Google Scholar 

  134. Nickerson NN, Joag V, McGavin MJ (2008) Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 69:1530–1543

    Article  CAS  PubMed  Google Scholar 

  135. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453

    Article  CAS  PubMed  Google Scholar 

  136. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  137. Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJ, van Kessel KP (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001

    Article  CAS  PubMed  Google Scholar 

  138. McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276:29969–29978

    Article  CAS  PubMed  Google Scholar 

  139. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS (2014) Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 3:897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth BN, Deleo FR (2007) Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9:1172–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, Gajkowska B, Golda A, Maciag-Gudowska A, Brix K, Shaw L, Foster T, Potempa J (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3:e1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Beaufort N, Wojciechowski P, Sommerhoff CP, Szmyd G, Dubin G, Eick S, Kellermann J, Schmitt M, Potempa J, Magdolen V (2008) The human fibrinolytic system is a target for the staphylococcal metalloprotease aureolysin. Biochem J 410:157–165

    Article  CAS  PubMed  Google Scholar 

  144. Saravanan R, Adav SS, Choong YK, van der Plas MJA, Petrlova J, Kjellström S, Sze SK, Schmidtchen A (2017) Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo. Sci Rep 7:13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Singh VK, Carlos MR, Singh K (2010) Physiological significance of the peptidoglycan hydrolase, LytM, in Staphylococcus aureus. FEMS Microbiol Lett 311:167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Firczuk M, Mucha A, Bochtler M (2005) Crystal structures of active LytM. J Mol Biol 354:578–590

    Article  CAS  PubMed  Google Scholar 

  147. Odintsov SG, Sabala I, Marcyjaniak M, Bochtler M (2004) Latent LytM at 1.3A resolution. J Mol Biol 335:775–785

    Article  CAS  PubMed  Google Scholar 

  148. Osipovitch DC, Griswold KE (2015) Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent. FEMS Microbiol Lett 362:1–7

    Article  CAS  PubMed  Google Scholar 

  149. Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I (2004) Similar active sites in lysostaphins and d-Ala-d-Ala metallopeptidases. Protein Sci 13:854–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pieper R, Gatlin-Bunai CL, Mongodin EF, Parmar PP, Huang ST, Clark DJ, Fleischmann RD, Gill SR, Peterson SN (2006) Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics 6:4246–4258

    Article  CAS  PubMed  Google Scholar 

  151. Renzoni A, Barras C, François P, Charbonnier Y, Huggler E, Garzoni C, Kelley WL, Majcherczyk P, Schrenzel J, Lew DP, Vaudaux P (2006) Transcriptomic and functional analysis of an autolysis-deficient, teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 50:3048–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ingavale SS, Van Wamel W, Cheung AL (2003) Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 48:1451–1466

    Article  CAS  PubMed  Google Scholar 

  153. Borišek J, Pintar S, Ogrizek M, Grdadolnik SG, Hodnik V, Turk D, Perdih A, Novič M (2018) Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus. J Enzyme Inhib Med Chem 33:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Porayath C, Suresh MK, Biswas R, Nair BG, Mishra N, Pal S (2018) Autolysin mediated adherence of Staphylococcus aureus with Fibronectin, Gelatin and Heparin. Int J Biol Macromol 110:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Binsker U, Palankar R, Wesche J, Kohler TP, Prucha J, Burchhardt G, Rohde M, Schmidt F, Bröker BM, Mamat U, Pané-Farré J, Graf A, Ebner P, Greinacher A, Hammerschmidt S (2018) Secreted immunomodulatory proteins of Staphylococcus aureus activate platelets and induce platelet aggregation. Thromb Haemost 118:745–757

    Article  PubMed  Google Scholar 

  156. Tiwari KB, Gatto C, Walker S, Wilkinson BJ (2018) Exposure of Staphylococcus aureus to targocil blocks translocation of the major autolysin Atl across the membrane, resulting in a significant decrease in autolysis. Antimicrob Agents Chemother 62:e00323–e00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pietiäinen M, François P, Hyyryläinen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genom 10:429

    Article  CAS  Google Scholar 

  158. Thumm G, Götz F (1997) Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23:1251–1265

    Article  CAS  PubMed  Google Scholar 

  159. Raulinaitis V, Tossavainen H, Aitio O, Juuti JT, Hiramatsu K, Kontinen V, Permi P (2017) Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep 7:6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. McAdow M, Missiakas DM, Schneewind O (2012) Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S, Huber R, Bode W, Bock PE (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535–539

    Article  CAS  PubMed  Google Scholar 

  162. Cheung AI, Projan SJ, Edelstein RE, Fischetti VA (1995) Cloning, expression, and nucleotide sequence of a Staphylococcus aureus gene (fbpA) encoding a fibrinogen-binding protein. Infect Immun 63:1914–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kawabata S, Morita T, Iwanaga S, Igarashi H (1985) Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J Biochem 98:1603–1614

    Article  CAS  PubMed  Google Scholar 

  164. Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W (2006) Fibrinogen substrate recognition by staphylocoagulase (pro)thrombin complexes. J Biol Chem 281:1179–1187

    Article  CAS  PubMed  Google Scholar 

  165. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Walker JN, Crosby HA, Spaulding AR, Salgado-Pabón W, Malone CL, Rosenthal CB, Schlievert PM, Boyd JM, Horswill AR (2013) The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 9:e1003819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hijikata-Okunomiya A, Kataoka N (2003) Argatroban inhibits staphylothrombin. J Thromb Haemost 1:2060–2061

    Article  CAS  PubMed  Google Scholar 

  168. Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P (2010) Dabigatran inhibits Staphylococcus aureus coagulase activity. J Clin Microbiol 48:4248–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L (2002) A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037–2044

    Article  CAS  PubMed  Google Scholar 

  170. Bjerketorp J, Jacobsson K, Frykberg L (2004) The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 234:309–314

    Article  CAS  PubMed  Google Scholar 

  171. Kroh HK, Panizzi P, Bock PE (2009) Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci USA 1106:7786–7791

    Article  Google Scholar 

  172. Thomer L, Schneewind O, Missiakas D (2013) Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 288:28283–28292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, Verhamme P, Vanassche T (2017) Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 15:1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Claes J, Ditkowski B, Liesenborghs L, Veloso TR, Entenza JM, Moreillon P, Vanassche T, Verhamme P, Hoylaerts MF, Heying R (2018) Assessment of the dual role of clumping factor A in S. aureus adhesion to endothelium in absence and presence of plasma. Thromb Haemost 118:1230–1241

    Article  PubMed  Google Scholar 

  175. McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM (2011) Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7:e1002307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP, Duncan JA (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 4:e7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cheung AL, Projan SJ (1994) Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for the expression of agr. J Bacteriol 176:4168–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xiong YQ, Willard J, Yeaman MR, Cheung AL, Bayer AS (2006) Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194:1267–1275

    Article  CAS  PubMed  Google Scholar 

  179. Zhou Y, Chen C, Pan J, Deng X, Wang J (2018) Epigallocatechin gallate can attenuate human alveolar epithelial cell injury induced by alpha-haemolysin. Microb Pathog 115:222–226

    Article  CAS  PubMed  Google Scholar 

  180. Horn J, Klepsch M, Manger M, Wolz C, Rudel T, Fraunholz M (2018) The long non-coding RNA SSR42 controls Staphylococcus aureus α-toxin transcription in response to environmental stimuli. J Bacteriol. https://doi.org/10.1128/JB.00252-18 (Epub ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  181. Essmann F, Bantel H, Totzke G, Engels IH, Sinha B, Schulze-Osthoff K, Jänicke RU (2003) Staphylococcus aureus alpha-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death Differ 10:1260–1272

    Article  CAS  PubMed  Google Scholar 

  182. Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW (2002) The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol 159:893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227–7235

    Article  CAS  PubMed  Google Scholar 

  185. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  186. Wilke GA, Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107:13473–13478

    Article  PubMed  Google Scholar 

  187. Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F (2018) Deciphering the pathological role of staphylococcal α-toxin and panton-valentine leukocidin using a novel Ex Vivo human skin model. Front Immunol 9:951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Smith IDM, Milto KM, Doherty CJ, Amyes SGB, Simpson AHRW, Hall AC (2018) A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Jt Res 7:457–467

    Article  CAS  Google Scholar 

  189. Keitsch S, Riethmüller J, Soddemann M, Sehl C, Wilker B, Edwards MJ, Caldwell CC, Fraunholz M, Gulbins E, Becker KA (2018) Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin. Biol Chem. https://doi.org/10.1515/hsz-2018-0161 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  190. Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, Jorch SK, Deppermann C, Bubeck Wardenburg J, Davis RP, Jenne CN, Stover KC, Sellman BR, Kubes P (2018) α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ortines RV, Liu H, Cheng LI, Cohen TS, Lawlor H, Gami A, Wang Y, Dillen CA, Archer NK, Miller RJ, Ashbaugh AG, Pinsker BL, Marchitto MC, Tkaczyk C, Stover CK, Sellman BR, Miller LS (2018) Neutralizing alpha-toxin accelerates healing of Staphylococcus aureus-infected wounds in nondiabetic and diabetic mice. Antimicrob Agents Chemother 62:e02288–e02217

    Article  PubMed  PubMed Central  Google Scholar 

  192. Tkaczyk C, Semenova E, Shi YY, Rosenthal K, Oganesyan V, Warrener P, Stover CK, Sellman BR (2018) Alanine scanning mutagenesis of the MEDI4839 (Suvratoxumab) epitope reduces alpha toxin lytic activity in vitro and S. aureus fitness in infection models. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01033-18 (Epub ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  193. Saleh FA, Freer JH (1984) Inhibition of secretion of staphylococcal alpha toxin by cerulenin. Med Microbiol 18:205–216

    Article  CAS  Google Scholar 

  194. Teng Z, Shi D, Liu H, Shen Z, Zha Y, Li W, Deng X, Wang J (2017) Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression. Appl Microbiol Biotechnol 101:6697–6703

    Article  CAS  PubMed  Google Scholar 

  195. Moyano AJ, Racca AC, Soria G, Saka HA, Andreoli V, Smania AM, Sola C, Bocco JL (2018) c-Jun proto-oncoprotein plays a protective role in lung epithelial cells exposed to staphylococcal α-toxin. Front Cell Infect Microbiol 8:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jin Y, Li M, Shang Y, Liu L, Shen X, Lv Z, Hao Z, Duan J, Wu Y, Chen C, Pan J, Yu F (2018) Sub-Inhibitory concentrations of mupirocin strongly inhibit alpha-toxin production in high-level mupirocin-resistant MRSA by down-regulating agr, saeRS, and sarA. Front Microbiol 9:993

    Article  PubMed  PubMed Central  Google Scholar 

  197. Xuewen H, Ping O, Zhongwei Y, Zhongqiong Y, Hualin F, Juchun L, Changliang H, Gang S, Zhixiang Y, Xu S, Yuanfeng Z, Lixia L, Lizi Y (2018) Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. World J Microbiol Biotechnol 34:64

    Article  CAS  PubMed  Google Scholar 

  198. Chen Y, Chen M, Zhang Y, Lee JH, Escajadillo T, Gong H, Fang RH, Gao W, Nizet V, Zhang L (2018) Broad-spectrum neutralization of pore-forming toxins with human erythrocyte membrane-coated nanosponges. Adv Healthc Mater 7:e1701366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ziebandt AK, Weber H, Rudolph J, Schmid R, Höper D, Engelmann S, Hecker M (2001) Extracellular proteins of Staphylococcus aureus and the role of SarA and sigma B. Proteomics 1:480–493

    Article  CAS  PubMed  Google Scholar 

  200. Bokarewa MI, Jin T, Tarkowski A (2006) Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 38:504–509

    Article  CAS  PubMed  Google Scholar 

  201. Parry MA, Fernandez-Catalan C, Bergner A, Huber R, Hopfner KP, Schlott B, Gührs KH, Bode W (1998) The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol 5:917–923

    Article  CAS  PubMed  Google Scholar 

  202. Silence K, Collen D, Lijnen HR (1993) Interaction between staphylokinase, plasmin(ogen), and alpha 2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin-staphylokinase complex by alpha 2-antiplasmin. J Biol Chem 268:9811–9816

    CAS  PubMed  Google Scholar 

  203. Sakharov DV, Lijnen HR, Rijken DC (1996) Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 271:27912–27928

    Article  CAS  PubMed  Google Scholar 

  204. Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P (2016) Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 42:866–882

    Article  CAS  PubMed  Google Scholar 

  205. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005) Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484

    Article  CAS  PubMed  Google Scholar 

  206. Santala A, Saarinen J, Kovanen P, Kuusela P (1999) Activation of interstitial collagenase, MMP-1, by Staphylococcus aureus cells having surface-bound plasmin: a novel role of plasminogen receptors of bacteria. FEBS Lett 461:153–156

    Article  CAS  PubMed  Google Scholar 

  207. Kwiecinski J, Peetermans M, Liesenborghs L, Na M, Björnsdottir H, Zhu X, Jacobsson G, Johansson BR, Geoghegan JA, Foster TJ et al (2016) Staphylokinase control of Staphylococcus aureus biofilm formation and detachment through host plasminogen activation. J Infect Dis 213:139–148

    Article  CAS  PubMed  Google Scholar 

  208. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    Article  CAS  PubMed  Google Scholar 

  209. Nguyen LT, Vogel HJ (2016) Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 6:31817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Braff MH, Jones AL, Skerrett SJ, Rubens CE (2007) Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 195:1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Geisbrecht BV, Hamaoka BY, Perman B, Zemla A, Leahy DJ (2005) The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J Biol Chem 280:17243–17250

    Article  CAS  PubMed  Google Scholar 

  212. Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550

    Article  CAS  PubMed  Google Scholar 

  213. Stapels DA, Ramyar KX, Bischoff M, von Köckritz-Blickwede M, Milder FJ, Ruyken M, Eisenbeis J, McWhorter WJ et al (2014) Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci USA 111:13187–13192

    Article  CAS  PubMed  Google Scholar 

  214. Woehl JL, Stapels DAC, Garcia BL, Ramyar KX, Keightley A, Ruyken M, Syriga M, Sfyroera G, Weber AB et al (2014) The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. J Immunol 193:6161–6171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Palma M, Haggar A, Flock JI (1999) Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol 181:2840–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693

    Article  CAS  PubMed  Google Scholar 

  217. Edwards AM, Bowden MG, Brown EL, Laabei M, Massey RC (2012) Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A. PLoS One 7:e43046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Eisenbeis J, Saffarzadeh M, Peisker H, Jung P, Thewes N, Preissner KT, Herrmann M, Molle V, Geisbrecht BV, Jacobs K, Bischoff M (2018) The Staphylococcus aureus extracellular adherence protein Eap Is a DNA binding protein capable of blocking neutrophil extracellular trap formation. Front Cell Infect Microbiol 8:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Sabat A, Melles DC, Martirosian G, Grundmann H, van Belkum A, Hryniewicz W (2006) Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J Clin Microbiol 44:1135–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hazenbos WL, Kajihara KK, Vandlen R, Morisaki JH, Lehar SM, Kwakkenbos MJ, Beaumont T, Bakker AQ, Phung Q et al (2013) Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 9:e1003653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S, Anderson M, Leblanc JF, Schneewind O, Faull KF, Missiakas D (2014) N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J Biol Chem 289:3478–3486

    Article  CAS  PubMed  Google Scholar 

  222. Chen H, Ricklin D, Hammel M, Garcia BL, McWhorter WJ, Sfyroera G, Wu YQ, Tzekou A, Li S, Geisbrecht BV, Woods VL Jr, Lambris JD (2010) Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc Natl Acad Sci USA 107:17621–17626

    Article  PubMed  Google Scholar 

  223. Lee LYL, Liang X, Hook M, Brown EL (2004) Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J Biol Chem 279:50710–50716

    Article  CAS  PubMed  Google Scholar 

  224. Ko YP, Kang M, Ganesh VK, Ravirajan D, Li B, Höök M (2016) Coagulase and Efb of Staphylococcus aureus have a common fibrinogen binding motif. MBio 7:e01885–e01815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Posner MG, Upadhyay A, Abubaker AA, Fortunato TM, Vara D, Canobbio I, Bagby S, Pula G (2016) Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits the formation of platelet-leukocyte complexes. J Biol Chem 291:2764–2776

    Article  CAS  PubMed  Google Scholar 

  226. Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, McDevitt D, Brown EL (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D, Foster TJ, Speziale P, Dufrêne YF (2016) Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. MBio 7:e01529–e01516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Madani A, Garakani K, Mofrad MRK (2017) Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen. PLoS One 12:e0179601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ (2004) Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol 25:368–373

    Article  CAS  PubMed  Google Scholar 

  230. Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH (2010) Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology 215:1–11

    Article  CAS  PubMed  Google Scholar 

  231. Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V, Foster TJ, Speziale P, Dufrêne YF (2017) Single-cell and single-molecule analysis unravels the multifunctionality of the Staphylococcus aureus collagen-binding protein cna. ACS Nano 11:2160–2170

    Article  CAS  PubMed  Google Scholar 

  232. Rooijakkers SH, Milder FJ, Bardoel BW, Ruyken M, van Strijp JA, Gros P (2007) Staphylococcal complement inhibitor: structure and active sites. J Immunol 179:2989–2998

    Article  CAS  PubMed  Google Scholar 

  233. Jongerius I, Puister M, Wu J, Ruyken M, van Strijp JA, Rooijakkers SH (2010) Staphylococcal complement inhibitor modulates phagocyte responses by dimerization of convertases. J Immunol 184:420–425

    Article  CAS  PubMed  Google Scholar 

  234. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927

    Article  CAS  PubMed  Google Scholar 

  235. Hoekstra H, Romero Pastrana F, Bonarius HPJ, van Kessel KPM, Elsinga GS, Kooi N, Groen H, van Dijl JM, Buist G (2018) A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN. Virulence 9:70–82

    Article  CAS  PubMed  Google Scholar 

  236. Langley R, Patel D, Jackson N, Clow F, Fraser JD (2010) Staphylococcal superantigen super-domains in immune evasion. Crit Rev Immunol 30:149–165

    Article  CAS  PubMed  Google Scholar 

  237. Hermans SJ, Baker HM, Sequeira RP, Langley RJ, Baker EN, Fraser JD (2012) Structural and functional properties of staphylococcal superantigen-like protein 4. Infect Immun 80:4004–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Williams RJ, Ward JM, Henderson B, Poole S, O’Hara BP, Wilson M, Nair SP (2000) Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins: characterization of the prototypic gene and its protein product, SET1. Infect Immun 68:4407–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Koymans KJ, Bisschop A, Vughs MM, van Kessel KP, de Haas CJ, van Strijp JA (2016) Staphylococcal superantigen-like protein 1 and 5 (SSL1 & SSL5) limit neutrophil chemotaxis and migration through MMP-inhibition. Int J Mol Sci 17(7):E1072

    Article  CAS  PubMed  Google Scholar 

  240. Koymans KJ, Goldmann O, Karlsson CAQ, Sital W, Thänert R, Bisschop A, Vrieling M, Malmström J, van Kessel KPM, de Haas CJC, van Strijp JAG, Medina E (2017) The TLR2 antagonist staphylococcal superantigen-like protein 3 acts as a virulence factor to promote bacterial pathogenicity in vivo. J Innate Immun 9:561–573

    Article  CAS  PubMed  Google Scholar 

  241. Walenkamp AM, Boer IG, Bestebroer J, Rozeveld D, Timmer-Bosscha H, Hemrika W, van Strijp JA, de Haas CJ (2009) Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 11:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kurisaka C, Oku T, Itoh S, Tsuji T (2018) Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 62:168–175

    Article  CAS  PubMed  Google Scholar 

  243. Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas PA (2018) Staphylococcal superantigen-like protein 13 activates neutrophils via Formyl Peptide Receptor 2. Cell Microbiol 11:e12941

    Article  CAS  Google Scholar 

  244. Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV, van Kessel KP, van Strijp JA, de Haas CJ (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–2943

    Article  CAS  PubMed  Google Scholar 

  245. de Haas CJ, Weeterings C, Vughs MM, de Groot PG, Van Strijp JA, Lisman T (2009) Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibalpha and alpha IIb beta 3. J Thromb Haemost 7:1867–1874

    Article  CAS  PubMed  Google Scholar 

  246. Li Y, Clow F, Fraser JD, Lin F (2018) Therapeutic potential of staphylococcal superantigen-like protein 7 for complement-mediated hemolysis. J Mol Med (Berl) 96:965–974

    Article  CAS  Google Scholar 

  247. Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K (2013) Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 26(288):21569–21580

    Article  CAS  Google Scholar 

  248. Patel D, Wines BD, Langley RJ, Fraser JD (2010) Specificity of staphylococcal superantigen-like protein 10 toward the human IgG1 Fc domain. J Immunol 184:6283–6292

    Article  CAS  PubMed  Google Scholar 

  249. Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA, Santa Maria J Jr, Lazinski DW, Camilli A, Walker S, Hooper DC, Gilmore MS (2018) Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. MBio 5:e01729–e01714

    Google Scholar 

  250. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, Whiteley M (2017) Co-infecting microbes dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol 2:17079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Grosser MR, Paluscio E, Thurlow LR, Dillon MM, Cooper VS, Kawula TH, Richardson AR (2018) Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathog 14:e1006907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Prof. Ashis Kumar Nandi, JNU, New Delhi, India and Dr. M.P. Darokar CSIR-CIMAP, Lucknow, India for their help and support. We would also like to thank Department of Biotechnology (DBT), Ministry of Science & Technology and DST-SERB, Govt. of India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Jyoti Phukan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Edited by: C. Bogdan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Phukan, U.J. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 208, 585–607 (2019). https://doi.org/10.1007/s00430-018-0573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0573-y

Keywords