Skip to main content

Advertisement

Log in

The proteome of human cytomegalovirus virions and dense bodies is conserved across different strains

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The morphogenesis of human cytomegalovirus (HCMV) particles is incompletely understood. Analysis of the protein composition of HCMV virions and subviral dense bodies (DBs) by mass spectrometry provides valuable information to increase our knowledge about viral morphogenesis. Here we addressed the viral proteome of virions and DBs from two fibroblast-passaged isolates and the widely used endotheliotropic TB4-BAC40 strain of HCMV. The results show a striking concordance of the particle proteomes of different strains. One surprising finding was that only low levels of gpUL128-131A were found in TB40-BAC4 virions. These three proteins, together with gH and gL, form a protein complex that is critical for the endothelial cell tropism of that strain. This indicates that either few molecules of that complex per virion or a small fraction of pentamer-positive virions suffice to retain the tropism. Furthermore, using a pp65-deficient variant of TB40-BAC4, we confirm our previous finding that the major tegument protein serves as a scaffold to support the upload of a fraction of the outer tegument proteins into particles. The results demonstrate that HCMV particle morphogenesis is an orchestrated process that leads to the formation of particles with a largely strain-independent protein composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Viswanathan K, Früh K (2007) Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Rev Proteomics 4:815–829

    Article  CAS  PubMed  Google Scholar 

  2. Maxwell KL, Frappier L (2007) Viral proteomics. Microbiol Mol Biol Rev 71:398–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, Wang D, Camp DG, Rodland K, Wiley S, Britt W, Shenk T, Smith RD, Nelson JA (2004) Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78:10960–10966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Caposio P, Streblow DN, Nelson JA (2013) Cytomegalovirus proteomics. In: Reddehase MJ (ed) Cytomegaloviruses From Molecular Pathogenesis to Intervention. Caister Academic Press, Norfolk, UK, pp 86–108

    Google Scholar 

  5. Reyda S, Tenzer S, Navarro P, Gebauer W, Saur M, Krauter S, Büscher N, Plachter B (2014) The tegument protein pp65 of human cytomegalovirus acts as an optional scaffold protein that optimizes protein uploading into viral particles. J Virol 88:9633–9646

    Article  PubMed Central  PubMed  Google Scholar 

  6. Reyda S, Büscher N, Tenzer S, Plachter B (2014) Proteomic analyses of human cytomegalovirus strain AD169 derivatives reveal highly conserved patterns of viral and cellular proteins in infected fibroblasts. Viruses 6:172–188

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, Griffiths PD, Sinzger C, McSharry BP, Wilkinson GW, Davison AJ (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312

    Article  CAS  PubMed  Google Scholar 

  8. Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ, Baluchova K, McSharry BP, Tomasec P, Emery VC, Percivalle E, Sarasini A, Gerna G, Wilkinson GW, Davison AJ (2010) Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 91:1535–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cunningham C, Gatherer D, Hilfrich B, Baluchova K, Dargan DJ, Thomson M, Griffiths PD, Wilkinson GW, Schulz TF, Davison AJ (2010) Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J Gen Virol 91:605–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE (2003) Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci USA 100:14976–14981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci USA 100:14223–14228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Murphy E, Shenk T (2008) Human cytomegalovirus genome. Curr Top Microbiol Immunol 325:1–19

    CAS  PubMed  Google Scholar 

  13. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102:18153–18158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang D, Shenk T (2005) Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 79:10330–10338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G, Baldanti F, Revello MG (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86:275–284

    Article  CAS  PubMed  Google Scholar 

  17. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G (2004) Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78:10023–10033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Webel R, Hakki M, Prichard MN, Rawlinson WD, Marschall M, Chou S (2014) Differential properties of cytomegalovirus pUL97 kinase isoforms affect viral replication and maribavir susceptibility. J Virol 88:4776–4785

    Article  PubMed Central  PubMed  Google Scholar 

  19. Herget T, Freitag M, Morbitzer M, Kupfer R, Stamminger T, Marschall M (2004) Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob Agents Chemother 48:4154–4162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sinzger C, Schmidt K, Knapp J, Kahl M, Beck R, Waldman J, Hebart H, Einsele H, Jahn G (1999) Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J Gen Virol 80(Pt 11):2867–2877

    CAS  PubMed  Google Scholar 

  21. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368

    Article  CAS  PubMed  Google Scholar 

  22. Zalckvar E, Paulus C, Tillo D, Asbach-Nitzsche A, Lubling Y, Winterling C, Strieder N, Mücke K, Goodrum F, Segal E, Nevels M (2013) Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein. Proc Natl Acad Sci USA 110:13126–13131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mücke K, Paulus C, Bernhardt K, Gerrer K, Schön K, Fink A, Sauer EM, Asbach-Nitzsche A, Harwardt T, Kieninger B, Kremer W, Kalbitzer HR, Nevels M (2014) Human cytomegalovirus major immediate early 1 protein targets host chromosomes by docking to the acidic pocket on the nucleosome surface. J Virol 88:1228–1248

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tischer BK, Smith GA, Osterrieder N (2010) En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol 634:421–430

    Article  CAS  PubMed  Google Scholar 

  25. Tischer BK, von EJ, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197

    Article  CAS  PubMed  Google Scholar 

  26. Chevillotte M, Landwehr S, Linta L, Frascaroli G, Luske A, Buser C, Mertens T, von Einem J (2009) Major tegument protein pp65 of human cytomegalovirus is required for the incorporation of pUL69 and pUL97 into the virus particle and for viral growth in macrophages. J Virol 83:2480–2490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Krauss S, Kaps J, Czech N, Paulus C, Nevels M (2009) Physical requirements and functional consequences of complex formation between the cytomegalovirus IE1 protein and human STAT2. J Virol 83:12854–12870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11:167–170

    Article  CAS  PubMed  Google Scholar 

  29. Yu X, Shah S, Lee M, Dai W, Lo P, Britt W, Zhu H, Liu F, Zhou ZH (2011) Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus. J Struct Biol 174:451–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Klages S, Rüger B, Jahn G (1989) Multiplicity dependent expression of the predominant phosphoprotein pp65 of human cytomegalovirus. Virus Res 12:159–168

    Article  CAS  PubMed  Google Scholar 

  31. Pari GS (2008) Nuts and bolts of human cytomegalovirus lytic DNA replication. Curr Top Microbiol Immunol 325:153–166

    CAS  PubMed  Google Scholar 

  32. Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses. Caister Academic Press, Norfolk, pp 297–329

    Google Scholar 

  33. Zhou M, Yu Q, Wechsler A, Ryckman BJ (2013) Comparative analysis of gO isoforms reveals that strains of human cytomegalovirus differ in the ratio of gH/gL/gO and gH/gL/UL128-131 in the virion envelope. J Virol 87:9680–9690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ryckman BJ, Chase MC, Johnson DC (2010) Human cytomegalovirus TR strain glycoprotein O acts as a chaperone promoting gH/gL incorporation into virions but is not present in virions. J Virol 84:2597–2609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Scrivano L, Sinzger C, Nitschko H, Koszinowski UH, Adler B (2011) HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog 7:e1001256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Murrell I, Tomasec P, Wilkie GS, Dargan DJ, Davison AJ, Stanton RJ (2013) Impact of sequence variation in the UL128 locus on production of human cytomegalovirus in fibroblast and epithelial cells. J Virol 87:10489–10500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Plotkin SA, Plachter B (2013) Cytomegalovirus Vaccine: On the Way to the Future? In: Reddehase MJ (ed) Cytomegaloviruses: From Molecular Pathogenesis to Intervention. Caister Academic Press, Norfolk, U.K., pp 424–449

    Google Scholar 

  38. Kabanova A, Perez L, Lilleri D, Marcandalli J, Agatic G, Becattini S, Preite S, Fuschillo D, Percivalle E, Sallusto F, Gerna G, Corti D, Lanzavecchia A (2014) Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc Natl Acad Sci USA 111:17965–17970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E, Sallusto F, Lanzavecchia A, Corti D, Gerna G (2013) Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS ONE 8:e59863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lilleri D, Kabanova A, Lanzavecchia A, Gerna G (2012) Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J Clin Immunol 32:1324–1331

    Article  CAS  PubMed  Google Scholar 

  41. Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG, Gerna G, Sallusto F, Lanzavecchia A (2010) Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 84:1005–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Saccoccio FM, Sauer AL, Cui X, Armstrong AE, Habib ESE, Johnson DC, Ryckman BJ, Klingelhutz AJ, Adler SP, McVoy MA (2011) Peptides from cytomegalovirus UL130 and UL131 proteins induce high titer antibodies that block viral entry into mucosal epithelial cells. Vaccine 29:2705–2711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Freed DC, Tang Q, Tang A, Li F, He X, Huang Z, Meng W, Xia L, Finnefrock AC, Durr E, Espeseth AS, Casimiro DR, Zhang N, Shiver JW, Wang D, An Z, Fu TM (2013) Pentameric complex of viral glycoprotein H is the primary target for potent neutralization by a human cytomegalovirus vaccine. Proc Natl Acad Sci USA 110:E4997–E5005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wussow F, Chiuppesi F, Martinez J, Campo J, Johnson E, Flechsig C, Newell M, Tran E, Ortiz J, La RC, Herrmann A, Longmate J, Chakraborty R, Barry PA, Diamond DJ (2014) Human cytomegalovirus vaccine based on the envelope gH/gL pentamer complex. PLoS Pathog 10:e1004524

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wen Y, Monroe J, Linton C, Archer J, Beard CW, Barnett SW, Palladino G, Mason PW, Carfi A, Lilja AE (2014) Human cytomegalovirus gH/gL/UL128/UL130/UL131A complex elicits potently neutralizing antibodies in mice. Vaccine 32:3796–3804

    Article  CAS  PubMed  Google Scholar 

  46. Mocarski ES, Shenk T, Griffiths PD, Pass RF (2013) Cytomegaloviruses. In: Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer Lippincott Williams & Wilkins, Philadelphia, pp 1960–2014

    Google Scholar 

Download references

Acknowledgments

Manfred Marschall, Erlangen, kindly provided strains R1 and R5. The donations of BAC clones by Lüder Wiebusch, University of Berlin, Germany, and by Thomas Shenk, Princeton University, USA, are gratefully acknowledged. This work was supported by a Grant from the Else Kröner Fresenius Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Plachter.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büscher, N., Paulus, C., Nevels, M. et al. The proteome of human cytomegalovirus virions and dense bodies is conserved across different strains. Med Microbiol Immunol 204, 285–293 (2015). https://doi.org/10.1007/s00430-015-0397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0397-y

Keywords

Navigation