Skip to main content

Advertisement

Log in

The E2 protein of human papillomavirus type 8 increases the expression of matrix metalloproteinase-9 in human keratinocytes and organotypic skin cultures

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Non-melanoma skin cancer (NMSC) is the most frequent human cancer of Caucasian populations. Although the ultraviolet irradiation is a key contributor to the establishment of this keratinocyte malignancy, the infection by some types of human papillomavirus (HPV) has also been implicated in NMSC development. Cancers occur as a result of a complex series of interactions between the cancer cell and its surrounding matrix. The matrix metalloproteinases (MMPs) play a role in degrading the extracellular matrix. MMP9 is an important gelatinase involved in processes such as cell migration, invasion and metastasis. In this report, we demonstrated by EMSA experiments that the MMP9 promoter contains a binding site for the transcriptional regulator E2 of HPV8. Transient reporter gene assays showed that HPV8-E2 activated the MMP9 promoter in a dose-dependent manner in human epidermal keratinocytes. An E2 transactivation-defective mutant (I73L) as well as a DNA-binding deficient mutant (R433K) demonstrated no activation of the MMP9 promoter, suggesting that both an intact transactivation and DNA-binding domain are required for E2 activation of the MMP9-promoter. The functional role of the E2 binding site within the MMP9 promoter was also confirmed by mutating the E2 binding site. In organotypic cultures of human skin, an overexpression of MMP9 was observed in suprabasal layers of the HPV8 E2-expressing epidermis thus confirming the results of the monolayer cultures. These results demonstrate that the early gene E2 of HPV8 is able to increase the expression of MMP9 by direct activation of the MMP9-promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    Article  PubMed  CAS  Google Scholar 

  2. Rigel DS (2008) Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol 58(5 Suppl 2):S129–132

    Article  PubMed  Google Scholar 

  3. Rodust PM, Stockfleth E, Ulrich C, Leverkus M, Eberle J (2009) UV-induced squamous cell carcinoma—a role for antiapoptotic signalling pathways. Br J Dermatol 161(Suppl 3):107–115

    Article  PubMed  CAS  Google Scholar 

  4. Pfister H (2003) Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr (31):52–56

  5. Akgül B, Cooke JC, Storey A (2006) HPV-associated skin disease. J Pathol 208(2):165–175

    Article  PubMed  Google Scholar 

  6. Karagas MR, Nelson HH, Sehr P, Waterboer T, Stukel TA, Andrew A, Green AC, Bavinck JN, Perry A, Spencer S, Rees JR, Mott LA, Pawlita M (2006) Human papillomavirus infection and incidence of squamous cell and basal cell carcinomas of the skin. J Natl Cancer Inst 98(6):389–395

    Article  PubMed  Google Scholar 

  7. Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V, Smyth N, Fuchs P, Pfister H (2005) Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65(4):1394–1400

    Article  PubMed  CAS  Google Scholar 

  8. Akgül B, Pfefferle R, Marcuzzi GP, Zigrino P, Krieg T, Pfister H, Mauch C (2006) Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol 15(1):35–42

    Article  PubMed  Google Scholar 

  9. Smola-Hess S, Pahne J, Mauch C, Zigrino P, Smola H, Pfister HJ (2005) Expression of membrane type 1 matrix metalloproteinase in papillomavirus-positive cells: role of the human papillomavirus (HPV) 16 and HPV8 E7 gene products. J Gen Virol 86(Pt 5):1291–1296

    Article  PubMed  CAS  Google Scholar 

  10. Akgül B, Karle P, Adam M, Fuchs PG, Pfister HJ (2003) Dual role of tumor suppressor p53 in regulation of DNA replication and oncogene E6-promoter activity of epidermodysplasia verruciformis-associated human papillomavirus type 8. Virology 308(2):279–290

    Article  PubMed  Google Scholar 

  11. Hadaschik D, Hinterkeuser K, Oldak M, Pfister HJ, Smola-Hess S (2003) The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation. J Virol 77(9):5253–5265

    Article  PubMed  CAS  Google Scholar 

  12. Lee D, Lee B, Kim J, Kim DW, Choe J (2000) cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 275(10):7045–7051

    Article  PubMed  CAS  Google Scholar 

  13. Massimi P, Pim D, Bertoli C, Bouvard V, Banks L (1999) Interaction between the HPV-16 E2 transcriptional activator and p53. Oncogene 18(54):7748–7754

    Article  PubMed  CAS  Google Scholar 

  14. Müller A, Ritzkowsky A, Steger G (2002) Cooperative activation of human papillomavirus type 8 gene expression by the E2 protein and the cellular coactivator p300. J Virol 76(21):11042–11053

    Article  PubMed  Google Scholar 

  15. Peng YC, Breiding DE, Sverdrup F, Richard J, Androphy EJ (2000) AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. J Virol 74(13):5872–5879

    Article  PubMed  CAS  Google Scholar 

  16. Oldak M, Smola H, Aumailley M, Rivero F, Pfister H, Smola-Hess S (2004) The human papillomavirus type 8 E2 protein suppresses beta4-integrin expression in primary human keratinocytes. J Virol 78(19):10738–10746

    Article  PubMed  CAS  Google Scholar 

  17. Steger G, Schnabel C, Schmidt HM (2002) The hinge region of the human papillomavirus type 8 E2 protein activates the human p21(WAF1/CIP1) promoter via interaction with Sp1. J Gen Virol 83(Pt 3):503–510

    PubMed  Google Scholar 

  18. Pfefferle R, Marcuzzi GP, Akgül B, Kasper HU, Schulze F, Haase I, Wickenhauser C, Pfister H (2008) The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. J Invest Dermatol 128(9):2310–2315

    Article  PubMed  CAS  Google Scholar 

  19. Behren A, Simon C, Schwab RM, Loetzsch E, Brodbeck S, Huber E, Stubenrauch F, Zenner HP, Iftner T (2005) Papillomavirus E2 protein induces expression of the matrix metalloproteinase-9 via the extracellular signal-regulated kinase/activator protein-1 signaling pathway. Cancer Res 65(24):11613–11621

    Article  PubMed  CAS  Google Scholar 

  20. Muhlen S, Behren A, Iftner T, Plinkert PK, Simon C (2009) AP-1 and ERK1 but not p38 nor JNK is required for CRPV early protein 2-dependent MMP-9 promoter activation in rabbit epithelial cells. Virus Res 139(1):100–105

    Article  PubMed  Google Scholar 

  21. Muhlen S, Behren A, Iftner T, Simon C (2010) Influence of HPV16 E2 and its localisation on the expression of matrix metalloproteinase-9. Int J Oncol 37(2):337–345

    PubMed  Google Scholar 

  22. Purdie KJ, Sexton CJ, Proby CM, Glover MT, Williams AT, Stables JN, Leigh IM (1993) Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res 53(21):5328–5333

    PubMed  CAS  Google Scholar 

  23. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99(14):1788–1794

    PubMed  CAS  Google Scholar 

  24. O’Shaughnessy RF, Akgül B, Storey A, Pfister H, Harwood CA, Byrne C (2007) Cutaneous human papillomaviruses down-regulate AKT1, whereas AKT2 up-regulation and activation associates with tumors. Cancer Res 67(17):8207–8215

    Article  PubMed  Google Scholar 

  25. Akgül B, Garcia-Escudero R, Ghali L, Pfister HJ, Fuchs PG, Navsaria H, Storey A (2005) The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res 65(6):2216–2223

    Article  PubMed  Google Scholar 

  26. Stubenrauch F, Pfister H (1994) Low-affinity E2-binding site mediates downmodulation of E2 transactivation of the human papillomavirus type 8 late promoter. J Virol 68(11):6959–6966

    PubMed  CAS  Google Scholar 

  27. Brokaw JL, Blanco M, McBride AA (1996) Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. J Virol 70(1):23–29

    PubMed  CAS  Google Scholar 

  28. Stubenrauch F, Colbert AM, Laimins LA (1998) Transactivation by the E2 protein of oncogenic human papillomavirus type 31 is not essential for early and late viral functions. J Virol 72(10):8115–8123

    PubMed  CAS  Google Scholar 

  29. Hegde RS, Grossman SR, Laimins LA, Sigler PB (1992) Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 359(6395):505–512

    Article  PubMed  CAS  Google Scholar 

  30. Prakash SS, Grossman SR, Pepinsky RB, Laimins LA, Androphy EJ (1992) Amino acids necessary for DNA contact and dimerization imply novel motifs in the papillomavirus E2 trans-activator. Genes Dev 6(1):105–116

    Article  PubMed  CAS  Google Scholar 

  31. McPhillips MG, Oliveira JG, Spindler JE, Mitra R, McBride AA (2006) Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80(19):9530–9543

    Article  PubMed  CAS  Google Scholar 

  32. Schweiger MR, You J, Howley PM (2006) Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 80(9):4276–4285

    Article  PubMed  CAS  Google Scholar 

  33. Senechal H, Poirier GG, Coulombe B, Laimins LA, Archambault J (2007) Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 358(1):10–17

    Article  PubMed  CAS  Google Scholar 

  34. Verdolini R, Amerio P, Goteri G, Bugatti L, Lucarini G, Mannello B, Filosa G, Offidani A, Brancorsini D, Biagini G, Giangiacomi M (2001) Cutaneous carcinomas and preinvasive neoplastic lesions. Role of MMP-2 and MMP-9 metalloproteinases in neoplastic invasion and their relationship with proliferative activity and p53 expression. J Cutan Pathol 28(3):120–126

    Article  PubMed  CAS  Google Scholar 

  35. Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A (1999) Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res 19(4B):2929–2938

    PubMed  CAS  Google Scholar 

  36. Chebassier N, Leroy S, Tenaud I, Knol AC, Dreno B (2002) Overexpression of MMP-2 and MMP-9 in squamous cell carcinomas of immunosuppressed patients. Arch Dermatol Res 294(3):124–126

    Article  PubMed  CAS  Google Scholar 

  37. Vermeer PD, Denker J, Estin M, Moninger TO, Keshavjee S, Karp P, Kline JN, Zabner J (2009) MMP9 modulates tight junction integrity and cell viability in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 296(5):L751–L762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Shu Ye for the gift of the MMP9 reporter plasmid. This research was funded by grants from the Deutsche Forschungsgemeinschaft (grant number PF123/5-1) and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Akgül.

Additional information

Herbert Pfister and Alan Storey contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgül, B., García-Escudero, R., Ekechi, C. et al. The E2 protein of human papillomavirus type 8 increases the expression of matrix metalloproteinase-9 in human keratinocytes and organotypic skin cultures. Med Microbiol Immunol 200, 127–135 (2011). https://doi.org/10.1007/s00430-011-0183-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-011-0183-4

Keywords

Navigation