Abstract
Over the past 2 decades, researchers have tried to uncover how the human brain can extract linguistic information from a sequence of visual symbols. The description of how the brain’s visual system processes words and enables reading has improved with the progressive refinement of experimental methodologies and neuroimaging techniques. This review provides a brief overview of this research journey. We start by describing classical models of object recognition in non-human primates, which represent the foundation for many of the early models of visual word recognition in humans. We then review functional neuroimaging studies investigating the word-selective regions in visual cortex. This research led to the differentiation of highly specialized areas, which are involved in the analysis of different aspects of written language. We then consider the corresponding anatomical measurements and provide a description of the main white matter pathways carrying neural signals crucial to word recognition. Finally, in an attempt to integrate structural, functional, and electrophysiological findings, we propose a view of visual word recognition, accounting for spatial and temporal facets of word-selective neural processes. This multi-modal perspective on the neural circuitry of literacy highlights the relevance of a posterior–anterior differentiation in ventral occipitotemporal cortex for visual processing of written language and lexical features. It also highlights unanswered questions that can guide us towards future research directions. Bridging measures of brain structure and function will help us reach a more precise understanding of the transformation from vision to language.


Source: pubmed.gov



Similar content being viewed by others
Availability of data and material
Data to reproduce Fig. 4 are available at: https://github.com/SendyCaffarra/VWFA_coordinates/tree/main.
Code availability
Code to reproduce Fig. 4 is available at: https://github.com/SendyCaffarra/VWFA_coordinates/tree/main.
References
Baker CI, Liu J, Wald LL et al (2007) Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA 104:9087–9092. https://doi.org/10.1073/pnas.0703300104
Bao P, She L, Mcgill M, Tsao DY (2020) A map of object space in primate inferotemporal cortex. Nature. https://doi.org/10.1038/s41586-020-2350-5
Barber HA, Kutas M (2007) Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Res Rev 53:98–123. https://doi.org/10.1016/j.brainresrev.2006.07.002
Bell AH, Malecek NJ, Morin EL et al (2011) Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J Neurosci 31:12229–12240. https://doi.org/10.1523/JNEUROSCI.5865-10.2011
Ben-Shachar M, Dougherty RF, Deutsch GK, Wandell BA (2007) Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb Cortex 17:1604–1611. https://doi.org/10.1093/cercor/bhl071
Ben-Shachar M, Dougherty RF, Deutsch GK, Wandell BA (2011) The development of cortical sensitivity to visual word forms. J Cogn Neurosci 23:2387–2399. https://doi.org/10.1162/jocn.2011.21615
Binder JR, Frost JA, Hammeke TA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362
Binder JR, Medler DA, Westbury CF et al (2006) Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage 33:739–748. https://doi.org/10.1016/j.neuroimage.2006.06.053
Blau V, van Atteveldt N, Formisano E et al (2008) Task-irrelevant visual letters interact with the processing of speech sounds in heteromodal and unimodal cortex. Eur J Neurosci 28:500–509
Boring MJ, Silson EH, Ward MJ et al (2021) Multiple adjoining word- and face-selective regions in ventral temporal cortex exhibit distinct dynamics. J Neurosci 41(29):6314–6327. https://doi.org/10.1523/JNEUROSCI.3234-20.2021
Borra E, Ichinohe N, Sato T et al (2010) Cortical connections to area TE in monkey: hybrid modular and distributed organization. Cereb Cortex 20:257–270. https://doi.org/10.1093/cercor/bhp096
Brem S, Bucher K, Halder P et al (2006) Evidence for developmental changes in the visual word processing network beyond adolescence. Neuroimage 29:822–837. https://doi.org/10.1016/j.neuroimage.2005.09.023
Brem S, Halder P, Bucher K et al (2009) Tuning of the visual word processing system: distinct developmental ERP and fMRI effects. Hum Brain Mapp 30:1833–1844. https://doi.org/10.1002/hbm.20751
Brem S, Maurer U, Kronbichler M et al (2020) Visual word form processing deficits driven by severity of reading impairments in children with developmental dyslexia. Sci Rep 10:18728. https://doi.org/10.1038/s41598-020-75111-8
Bub DN, Arguin M, Lecours AR (1993) Jules Dejerine and his interpretation of pure alexia. Brain Lang 45:531–559. https://doi.org/10.1006/brln.1993.1059
Caspers J, Zilles K, Eickhoff SB et al (2013) Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct 218:511–526. https://doi.org/10.1007/s00429-012-0411-8
Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94. https://doi.org/10.1006/nimg.2002.1136
Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107. https://doi.org/10.1093/brain/awg203
Centanni TM, King LW, Eddy MD et al (2017) Development of sensitivity versus specificity for print in the visual word form area. Brain Lang 170:62–70. https://doi.org/10.1016/j.bandl.2017.03.009
Chen L, Wassermann D, Abrams DA et al (2019) The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 10:5601. https://doi.org/10.1038/s41467-019-13634-z
Chyl K, Fraga-González G, Brem S, Jednoróg K (2021) Brain dynamics of (a)typical reading development—a review of longitudinal studies. Npj Sci Learn 6:1–9. https://doi.org/10.1038/s41539-020-00081-5
Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22:466–476. https://doi.org/10.1016/j.neuroimage.2003.12.049
Cohen L, Dehaene S, Naccache L et al (2000) The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123(Pt 2):291–307. https://doi.org/10.1093/brain/123.2.291
Cohen L, Lehéricy S, Chochon F et al (2002) Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125:1054–1069. https://doi.org/10.1093/brain/awf094
Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262. https://doi.org/10.1016/j.tics.2011.04.003
Dehaene S, Le Clec HG, Poline JB et al (2002) The visual word form area: a prelexical representation of visual words in the fusiform gyrus. NeuroReport 13:321–325
Dehaene S, Jobert A, Naccache L et al (2004) Letter binding and invariant recognition of masked words: behavioral and neuroimaging evidence. Psychol Sci 15:307–313. https://doi.org/10.1111/j.0956-7976.2004.00674.x
Dehaene S, Cohen L, Sigman M, Vinckier F (2005) The neural code for written words: a proposal. Trends Cogn Sci 9:335–341. https://doi.org/10.1016/j.tics.2005.05.004
Dehaene S, Pegado F, Braga LW et al (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364. https://doi.org/10.1126/science.1194140
Dehaene-Lambertz G, Monzalvo K, Dehaene S (2018) The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol 16:e2004103. https://doi.org/10.1371/journal.pbio.2004103
Déjerine J (1891) Sur un cas de cécité verbale avec agraphie suivi d’autopsie. Mémoires De La Société De Biologie 3:197–201
DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron Perspect 73:415–434. https://doi.org/10.1016/j.neuron.2012.01.010
Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473. https://doi.org/10.1126/science.1063414
Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851. https://doi.org/10.1126/science.1194908
Gaillard R, Naccache L, Pinel P et al (2006) Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50:191–204. https://doi.org/10.1016/j.neuron.2006.03.031
Gerrits R, Van der Haegen L, Brysbaert M, Vingerhoets G (2019) Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 117:196–204
Glezer LS, Riesenhuber M (2013) Individual variability in location impacts orthographic selectivity in the “visual word form area.” J Neurosci 33:11221–11226. https://doi.org/10.1523/JNEUROSCI.5002-12.2013
Glezer LS, Jiang X, Riesenhuber M (2009) Evidence for highly selective neuronal tuning to whole words in the “visual word form area.” Neuron 62:199–204. https://doi.org/10.1016/j.neuron.2009.03.017
Grainger J, Holcomb PJ (2009) Watching the word go by: on the time-course of component processes in visual word recognition. Lang Linguist Compass 3:128–156
Graves RE (1997) The legacy of the Wernicke-Lichtheim model. J Hist Neurosci 6:3–20. https://doi.org/10.1080/09647049709525682
Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15:536–548. https://doi.org/10.1038/nrn3747
Gross CG, Schiller PH, Wells C, Gerstein GL (1967) Single-unit activity in temporal association cortex of the monkey. J Neurophysiol 30:833–843. https://doi.org/10.1152/jn.1967.30.4.833
Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35:96–111. https://doi.org/10.1152/jn.1972.35.1.96
Grotheer M, Yeatman J, Grill-Spector K (2021) White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 227:117669. https://doi.org/10.1016/j.neuroimage.2020.117669
Hasson U, Levy I, Behrmann M et al (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–490. https://doi.org/10.1016/s0896-6273(02)00662-1
Hauk O, Davis MH, Ford M et al (2006) The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30:1383–1400. https://doi.org/10.1016/j.neuroimage.2005.11.048
Heeger DJ, Simoncelli EP, Movshon JA (1996) Computational models of cortical visual processing. Proc Natl Acad Sci USA 93:623–627. https://doi.org/10.1073/pnas.93.2.623
Heilbron M, Richter D, Ekman M et al (2020) Word contexts enhance the neural representation of individual letters in early visual cortex. Nat Commun 11:321. https://doi.org/10.1038/s41467-019-13996-4
Herbet G, Zemmoura I, Duffau H (2018) Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses. Front Neuroanat 12:77. https://doi.org/10.3389/fnana.2018.00077
Hirshorn EA, Li Y, Ward MJ et al (2016) Decoding and disrupting left midfusiform gyrus activity during word reading. Proc Natl Acad Sci USA 113:8162–8167. https://doi.org/10.1073/pnas.1604126113
Holcomb PJ, Grainger J (2006) On the time course of visual word recognition: an event-related potential investigation using masked repetition priming. J Cogn Neurosci 18:1631–1643. https://doi.org/10.1162/jocn.2006.18.10.1631
Hubel DH (1995) Eye, brain, and vision. Scientific American library series, No. 22, p 242
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
Hung CP, Kreiman G, Poggio T, DiCarlo JJ (2005) Fast readout of object identity from macaque inferior temporal cortex. Science 310:863–866. https://doi.org/10.1126/science.1117593
Jeurissen B, Descoteaux M, Mori S, Leemans A (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32:e3785. https://doi.org/10.1002/nbm.3785
Johansen-Berg H, Behrens TEJ (2013) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, New York
Kay KN, Yeatman JD (2017) Bottom-up and top-down computations in word- and face-selective cortex. Elife. https://doi.org/10.7554/eLife.22341
Khaligh-Razavi S-M, Kriegeskorte N (2014) Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol 10:e1003915. https://doi.org/10.1371/journal.pcbi.1003915
Kim N, Kim J, Kang C-K et al (2017) Human brain mapping of visual script familiarity between phonological and logographic language: 3 T functional MRI study. Biomed Res Int 2017:5732642. https://doi.org/10.1155/2017/5732642
Kim T, Bair W, Pasupathy A (2019) Neural coding for shape and texture in macaque area V4. J Neurosci 39:4760–4774. https://doi.org/10.1523/JNEUROSCI.3073-18.2019
Kronbichler M, Hutzler F, Wimmer H et al (2004) The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage 21:946–953. https://doi.org/10.1016/j.neuroimage.2003.10.021
Kruper J, Yeatman JD, Richie-Halford A, Bloom D, Grotheer M, Caffarra S, Kiar G, Karipidis II, Roy E, Chandio BQ, Garyfallidis E, Rokem A (2021) Evaluating the reliability of human brain white matter tractometry. Aperture 1 (in press)
Kumar U, Das T, Bapi RS et al (2010) Reading different orthographies: an fMRI study of phrase reading in Hindi-English bilinguals. Read Writ 23:239–255. https://doi.org/10.1007/s11145-009-9176-8
Lerma-Usabiaga G, Carreiras M, Paz-Alonso PM (2018) Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci USA 115:E9981–E9990. https://doi.org/10.1073/pnas.1803003115
Li J, Osher DE, Hansen HA et al (2020) Innate connectivity patterns drive the development of the visual word form area. Sci Rep 10:18039. https://doi.org/10.1038/s41598-020-75015-7
Liu J, Harris A, Kanwisher N (2010) Perception of face parts and face configurations: an FMRI study. J Cogn Neurosci 22:203–211. https://doi.org/10.1162/jocn.2009.21203
Lochy A, Jacques C, Maillard L et al (2018) Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci U S A 115:E7595–E7604. https://doi.org/10.1073/pnas.1718987115
López-Barroso D, Thiebaut de Schotten M, Morais J et al (2020) Impact of literacy on the functional connectivity of vision and language related networks. Neuroimage 213:116722. https://doi.org/10.1016/j.neuroimage.2020.116722
Lorenz S, Weiner KS, Caspers J et al (2017) Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb Cortex 27:373–385. https://doi.org/10.1093/cercor/bhv225
Ludwig E, Klingler J (1956) Atlas Cerebri Humani: Der innere Bau des Gehirns dargestellt auf Grund makroskopischer Präparate. S. Karger, Basel
Macaluso E, George N, Dolan R et al (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732. https://doi.org/10.1016/j.neuroimage.2003.09.049
Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6:176–184. https://doi.org/10.1016/s1364-6613(02)01870-3
Martin A, Schurz M, Kronbichler M, Richlan F (2015) Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum Brain Mapp 36:1963–1981. https://doi.org/10.1002/hbm.22749
McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299. https://doi.org/10.1016/s1364-6613(03)00134-7
McCarthy G, Nobre AC, Bentin S, Spencer DD (1995) Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J Neurosci 15:1080–1089
Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF (2013) The fine structure of shape tuning in area V4. Neuron 78:1102–1115. https://doi.org/10.1016/j.neuron.2013.04.016
Nobre AC, McCarthy G (1995) Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J Neurosci 15:1090–1098
Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372:260–263. https://doi.org/10.1038/372260a0
Nordt M, Gomez J, Natu VS et al (2021) Cortical recycling in high-level visual cortex during childhood development. Nat Hum Behav. https://doi.org/10.1038/s41562-021-01141-5
Oliver M, Carreiras M, Paz-Alonso PM (2017) Functional dynamics of dorsal and ventral reading networks in bilinguals. Cereb Cortex 27:5431–5443. https://doi.org/10.1093/cercor/bhw310
O’Rawe JF, Huang AS, Klein DN, Leung HC (2019) Posterior parietal influences on visual network specialization during development: an fMRI study of functional connectivity in children ages 9 to 12. Neuropsychologia 127:158–170. https://doi.org/10.1016/j.neuropsychologia.2019.03.001
Park SH, Russ BE, McMahon DBT et al (2017) Functional subpopulations of neurons in a macaque face patch revealed by single-unit fMRI mapping. Neuron 95:971-981.e5. https://doi.org/10.1016/j.neuron.2017.07.014
Pestilli F, Yeatman JD, Rokem A et al (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11:1058–1063. https://doi.org/10.1038/nmeth.3098
Pleisch G, Karipidis II, Brem A et al (2019) Simultaneous EEG and fMRI reveals stronger sensitivity to orthographic strings in the left occipito-temporal cortex of typical versus poor beginning readers. Dev Cogn Neurosci 40:100717. https://doi.org/10.1016/j.dcn.2019.100717
Poeppel D, Mangun GR, Gazzaniga MS (2020) The cognitive neurosciences, 6th edn. MIT Press, New York
Pugh KR, Shaywitz BA, Shaywitz SE et al (1996) Cerebral organization of component processes in reading. Brain 119(Pt 4):1221–1238
Rauschecker AM, Bowen RF, Parvizi J, Wandell BA (2012) Position sensitivity in the visual word form area. Proc Natl Acad Sci U S A 109:E1568–E1577. https://doi.org/10.1073/pnas.1121304109
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025. https://doi.org/10.1038/14819
Rossion B, Joyce CA, Cottrell GW, Tarr MJ (2003) Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage 20:1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010
Rueckl JG, Paz-Alonso PM, Molfese PJ et al (2015) Universal brain signature of proficient reading: evidence from four contrasting languages. Proc Natl Acad Sci USA 112:15510–15515. https://doi.org/10.1073/pnas.1509321112
Rust NC, Dicarlo JJ (2010) Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. J Neurosci 30:12978–12995. https://doi.org/10.1523/JNEUROSCI.0179-10.2010
Saygin ZM, Osher DE, Koldewyn K et al (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15:321–327. https://doi.org/10.1038/nn.3001
Saygin ZM, Osher DE, Norton ES et al (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19:1250–1255
Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63:569–580. https://doi.org/10.1016/j.neuroimage.2012.06.033
Setsompop K, Kimmlingen R, Eberlein E et al (2013) Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80:220–233. https://doi.org/10.1016/j.neuroimage.2013.05.078
Shaywitz BA, Shaywitz SE, Pugh KR et al (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52:101–110. https://doi.org/10.1016/s0006-3223(02)01365-3
Skeide MA, Kumar U, Mishra RK et al (2017) Learning to read alters cortico-subcortical cross-talk in the visual system of illiterates. Sci Adv 3:e1602612. https://doi.org/10.1126/sciadv.1602612
Srihasam K, Mandeville JB, Morocz IA et al (2012) Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73:608–619. https://doi.org/10.1016/j.neuron.2011.12.022
Srihasam K, Vincent JL, Livingstone MS (2014) Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat Neurosci 17:1776–1783. https://doi.org/10.1038/nn.3855
Stevens WD, Kravitz DJ, Peng CS et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297. https://doi.org/10.1523/JNEUROSCI.0138-17.2017
Stigliani A, Weiner KS, Grill-Spector K (2015) Temporal processing capacity in high-level visual cortex is domain specific. J Neurosci 35:12412–12424. https://doi.org/10.1523/JNEUROSCI.4822-14.2015
Takemura H, Rokem A, Winawer J et al (2015) A major human white matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26:2205–2214. https://doi.org/10.1093/cercor/bhv064
Takemura H, Caiafa CF, Wandell BA, Pestilli F (2016) Ensemble tractography. PLoS Comput Biol 12:1–22. https://doi.org/10.1371/journal.pcbi.1004692
Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189. https://doi.org/10.1152/jn.1991.66.1.170
Taylor JSH, Davis MH, Rastle K (2019) Mapping visual symbols onto spoken language along the ventral visual stream. Proc Natl Acad Sci 116:201818575. https://doi.org/10.1073/pnas.1818575116
Thesen T, McDonald CR, Carlson C et al (2012) Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat Commun 3:1284. https://doi.org/10.1038/ncomms2220
Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674. https://doi.org/10.1126/science.1119983
Van der Haegen L, Cai Q, Brysbaert M (2012) Colateralization of Broca’s area and the visual word form area in left-handers: fMRI evidence. Brain Lang 122:171–178. https://doi.org/10.1016/j.bandl.2011.11.004
van der Mark S, Bucher K, Maurer U et al (2009) Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. Neuroimage 47:1940–1949. https://doi.org/10.1016/j.neuroimage.2009.05.021
van der Mark S, Klaver P, Bucher K et al (2011) The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroimage 54:2426–2436. https://doi.org/10.1016/j.neuroimage.2010.10.002
Vinckier F, Dehaene S, Jobert A et al (2007) Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55:143–156. https://doi.org/10.1016/j.neuron.2007.05.031
Wandell BA (2016) Clarifying human white matter. Annu Rev Neurosci 39:103–128
Wandell BA, Rauschecker AM, Yeatman JD (2012) Learning to see words. Annu Rev Psychol 63:31–53. https://doi.org/10.1146/annurev-psych-120710-100434
Wang F, Dong Z, Tian Q et al (2021a) In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution. Sci Data 8:122. https://doi.org/10.1038/s41597-021-00904-z
Wang J, Joanisse MF, Booth JR (2021b) Letter fluency in 7–8-year-old children is related to the anterior, but not posterior, ventral occipito-temporal cortex during an auditory phonological task. Dev Cogn Neurosci 47:100898. https://doi.org/10.1016/j.dcn.2020.100898
Warrington EK, Shallice T (1980) Word-form dyslexia. Brain 103:99–112. https://doi.org/10.1093/brain/103.1.99
Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52:1559–1573. https://doi.org/10.1016/j.neuroimage.2010.04.262
Weiner KS, Barnett MA, Lorenz S et al (2017a) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27:146–161. https://doi.org/10.1093/cercor/bhw361
Weiner KS, Yeatman JD, Wandell BA (2017b) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97:274–276. https://doi.org/10.1016/j.cortex.2016.03.012
White AL, Boynton GM, Yeatman JD (2019a) You can’t recognize two words simultaneously. Trends Cogn Sci 23:812–814
White AL, Palmer J, Boynton GM, Yeatman JD (2019b) Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proc Natl Acad Sci USA 116:10087–10096. https://doi.org/10.1073/pnas.1822137116
Woolnough O, Donos C, Rollo PS et al (2020) Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat Hum Behav. https://doi.org/10.1038/s41562-020-00982-w
Yablonski M, Rastle K, Taylor JSH, Ben-Shachar M (2019) Structural properties of the ventral reading pathways are associated with morphological processing in adult English readers. Cortex 116:268–285. https://doi.org/10.1016/j.cortex.2018.06.011
Yeatman JD, White AL (2021) Reading: the confluence of vision and language. Annu Rev vis Sci. https://doi.org/10.1146/annurev-vision-093019-113509
Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012a) Development of white matter and reading skills. Proc Natl Acad Sci USA 109:E3045–E3053. https://doi.org/10.1073/pnas.1206792109
Yeatman JD, Dougherty RF, Myall NJ et al (2012b) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7:e49790. https://doi.org/10.1371/journal.pone.0049790
Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155. https://doi.org/10.1016/j.bandl.2012.04.010
Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci USA 111:E5214–E5223. https://doi.org/10.1073/pnas.1418503111
Zangenehpour S, Chaudhuri A (2005) Patchy organization and asymmetric distribution of the neural correlates of face processing in monkey inferotemporal cortex. Curr Biol 15:993–1005. https://doi.org/10.1016/j.cub.2005.04.031
Acknowledgements
We thank Michal Ben-Shachar for her helpful comments during revision.
Funding
This work was supported by European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 837228 and Rita Levi Montalcini fellowship to SC, NICHD R01-HD095861 and Jacobs Foundation Research Fellowship to JDY, Stanford Maternal and Child Health Research Institute award to IK, and the Zuckerman-CHE STEM Leadership Program to MY.
Author information
Authors and Affiliations
Contributions
All authors drafted and/or critically revised the work, SC and IK performed the literature and data search for figure preparation.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Caffarra, S., Karipidis, I.I., Yablonski, M. et al. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct Funct 226, 3051–3065 (2021). https://doi.org/10.1007/s00429-021-02384-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-021-02384-8