Skip to main content

Advertisement

Log in

Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophin factor (BDNF) has been implicated in neuronal survival, differentiation and activity-dependent synaptic plasticity in the central nervous system. It was suggested that during postnatal development BDNF regulates neuronal architecture and spine morphology of neurons within certain brain areas but not others. Particularly striking are the differences between striatum, cortex and hippocampus. Whether this is due to region- or cell type-specific effects is so far not known. We address this question using conditional bdnf knock-out mice to analyze neuronal architecture and spine morphology of pyramidal cortical and hippocampal neurons as well as inhibitory neurons from these brain areas and excitatory granule neurons from the dentate gyrus. While hippocampal and cortical inhibitory neurons and granule cells of the dentate gyrus are strongly impaired in their architecture, pyramidal neurons within the same brain regions only show a mild phenotype. We found a reduced TrkB phosphorylation within hippocampal interneurons and granule cells of the dentate gyrus, accompanied by a significant decrease in dendritic complexity. In contrast, in pyramidal neurons both TrkB phosphorylation and neuronal architecture are not altered. The results suggest diverse levels of responsiveness to BDNF for different hippocampal and cortical neuronal populations within the same brain area. Among the possible mechanisms mediating these differences in BDNF function, we tested whether zinc might be involved in TrkB transactivation specifically in pyramidal neurons. We propose that a BDNF-independent transactivation of TrkB receptor may be able to compensate the lack of BDNF signaling to modulate neuronal morphology in a cell type-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    Article  CAS  Google Scholar 

  • Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem (Cold Spring Harbor, NY) 11:172–178

    Article  Google Scholar 

  • Baquet ZC, Gorski JA, Jones KR (2004) Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 24:4250–4258

    Article  CAS  Google Scholar 

  • Bartrup JT, Moorman JM, Newberry NR (1997) BDNF enhances neuronal growth and synaptic activity in hippocampal cell cultures. Neuroreport 8:3791–3794

    Article  CAS  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  Google Scholar 

  • Bolton MM, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20:3221–3232

    Article  CAS  Google Scholar 

  • Carpenter G (1999) Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J Cell Biol 146:697–702

    Article  CAS  Google Scholar 

  • Castren E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97:119–126

    Article  CAS  Google Scholar 

  • Castren E, Zafra F, Thoenen H, Lindholm D (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA 89:9444–9448

    Article  CAS  Google Scholar 

  • Chakravarthy S, Saiepour MH, Bence M, Perry S, Hartman R, Couey JJ, Mansvelder HD, Levelt CN (2006) Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103:1071–1076

    Article  CAS  Google Scholar 

  • Chan JP, Unger TJ, Byrnes J, Rios M (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 142:49–58

    Article  CAS  Google Scholar 

  • Chan JP, Cordeira J, Calderon GA, Iyer LK, Rios M (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39:372–383

    Article  CAS  Google Scholar 

  • Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L (2008) The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods 169:182–190

    Article  CAS  Google Scholar 

  • Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination od zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT-3 gene. Proc Natl Acad Sci USA 96:1716–1721

    Article  CAS  Google Scholar 

  • Danzer SC, Pan E, Nef S, Parada LF, McNamara JO (2004) Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation. Neuroscience 126:859–869

    Article  CAS  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, Pence BD, Martin SA, Vieira VJ, Woods JA, McAuley E, Kramer AF (2010) Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 30:5368–5375

    Article  CAS  Google Scholar 

  • Flinn JM, Hunter D, Linkous DH, Lanzirotti A, Smith LN, Brightwell J, Jones BF (2005) Enhanced zinc consumption causes memory deficits and increased brain levels of zinc. Physiol Behav 83:793–803

    Article  CAS  Google Scholar 

  • Franco-Pons N, Casanovas-Aguilar C, Arroyo S, Rumia J, Perez-Clausell J, Danscher G (2000) Zinc-rich synaptic boutons in human temporal cortex biopsies. Neuroscience 98:429–435

    Article  CAS  Google Scholar 

  • Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84

    Article  CAS  Google Scholar 

  • Frederickson CJ, Moncrieff DW (1994) Zinc-containing neurons. Biol Signals 3:127–139

    Article  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471s–1483s

    Article  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Koh JY, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J Histochem Cytochem 12:1659–1662

    Article  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  Google Scholar 

  • Friedman WJ, Black IB, Kaplan DR (1998) Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84:101–114

    Article  CAS  Google Scholar 

  • Gao X, Smith GM, Chen J (2009) Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol 215:178–190

    Article  CAS  Google Scholar 

  • Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865

    Article  CAS  Google Scholar 

  • He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R (2004a) Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 10:959–965

    Article  CAS  Google Scholar 

  • He XP, Kotloski R, Nef S, Luikart BW, Parada LF, McNamara JO (2004b) Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43:31–42

    Article  CAS  Google Scholar 

  • He XP, Butler L, Liu X, McNamara JO (2006) The tyrosine receptor kinase B ligand, neurotrophin-4, is not required for either epileptogenesis or tyrosine receptor kinase B activation in the kindling model. Neuroscience 141:515–520

    Article  CAS  Google Scholar 

  • Hong EJ, McCord AE, Greenberg ME (2008) A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60:610–624

    Article  CAS  Google Scholar 

  • Horch HW, Kruttgen A, Portbury SD, Katz LC (1999) Destabilization of cortical dendrites and spines by BDNF. Neuron 23:353–364

    Article  CAS  Google Scholar 

  • Huang YZ, McNamara JO (2010) Mutual regulation of Src family kinases and the neurotrophin receptor TrkB. J Biol Chem 285:8207–8217

    Article  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  Google Scholar 

  • Huang YZ, Pan E, Xiong ZQ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57:546–558

    Article  CAS  Google Scholar 

  • Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa R III, Squinto SP et al (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA 89:3060–3064

    Article  CAS  Google Scholar 

  • Ivkovic S, Ehrlich ME (1999) Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 19:5409–5419

    Article  CAS  Google Scholar 

  • Jeanneteau F, Chao MV (2006) Promoting neurotrophic effects by GPCR ligands. Novartis Found Symp 276:181–189 (discussion 189–192, 187–233, 181–275)

    CAS  PubMed  Google Scholar 

  • Ji Y, Pang PT, Feng L, Lu B (2005) Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci 8:164–172

    Article  CAS  Google Scholar 

  • Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, Duan S, Lu B (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13:302–309

    Article  CAS  Google Scholar 

  • Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  CAS  Google Scholar 

  • Kellner Y, Godecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M (2014) The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front Synaptic Neurosci 6:5

    Article  Google Scholar 

  • Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, Nakamura S, Tsumoto T (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23:6123–6131

    Article  CAS  Google Scholar 

  • Kohara K, Yasuda H, Huang Y, Adachi N, Sohya K, Tsumoto T (2007) A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method. J Neurosci 27:7234–7244

    Article  CAS  Google Scholar 

  • Korets-Smith E, Lindemann L, Tucker KL, Jiang C, Kabacs N, Belteki G, Haigh J, Gertsenstein M, Nagy A (2004) Cre recombinase specificity defined by the tau locus. Genesis 40:131–138

    Article  CAS  Google Scholar 

  • Kroczka B, Branski P, Palucha A, Pilc A, Nowak G (2001) Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 55:297–300

    Article  CAS  Google Scholar 

  • Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474:100–104

    Article  CAS  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560

    Article  CAS  Google Scholar 

  • Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J Biol Chem 277:9096–9102

    Article  CAS  Google Scholar 

  • Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2008) Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 56(1):3–6

    Article  CAS  Google Scholar 

  • Linkous DH, Adlard PA, Wanschura PB, Conko KM, Flinn JM (2009a) The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice. J Alzheimers Dis 18:565–579

    Article  CAS  Google Scholar 

  • Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2009b) Evidence that the ZnT-3 protein controls the total amount id elemental zinc in synaptic vesicles. J Histochem Cytochem 56(1):3–6

    Article  Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol Organ Soc Miner Trace Elem (GMS) 20:3–18

    Article  CAS  Google Scholar 

  • Marty S, Berninger B, Carroll P, Thoenen H (1996) GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16:565–570

    Article  CAS  Google Scholar 

  • Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095

    Article  CAS  Google Scholar 

  • McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  CAS  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1996) Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17:1057–1064

    Article  CAS  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18(5):767–778

    Article  CAS  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    Article  CAS  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  CAS  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256

    Article  CAS  Google Scholar 

  • Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61:187–197

    Article  CAS  Google Scholar 

  • Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147

    Article  CAS  Google Scholar 

  • Puehringer D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16:407–415

    Article  CAS  Google Scholar 

  • Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658

    Article  CAS  Google Scholar 

  • Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M, Barde YA (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 30:1739–1749

    Article  CAS  Google Scholar 

  • Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15:1748–1757

    Article  CAS  Google Scholar 

  • Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and l-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93

    Article  CAS  Google Scholar 

  • Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17:4527–4535

    Article  CAS  Google Scholar 

  • Schen H, Zhang Y, Xu J, Long J, Qin H, Liu F, Guo J (2007) Zinc distribution and expression pattern of ZnT-3 in mouse brain. Biol Trace Elem Res 119(2):166–174

    Article  Google Scholar 

  • Segal RA, Bhattacharyya A, Rua LA, Alberta JA, Stephens RM, Kaplan DR, Stiles CD (1996) Differential utilization of Trk autophosphorylation sites. J Biol Chem 271:20175–20181

    Article  CAS  Google Scholar 

  • Seil FJ, Drake-Baumann R (2000) TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci 20:5367–5373

    Article  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370

    Article  CAS  Google Scholar 

  • Stranahan AM (2011) Physiological variability in brain-derived neurotrophic factor expression predicts dendritic spine density in the mouse dentate gyrus. Neurosci Lett 495:60–62

    Article  CAS  Google Scholar 

  • Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29:1579–1588

    Article  CAS  Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    Article  CAS  Google Scholar 

  • Takeda A, Tamano H (2014) Cognitive decline due to excess synaptic Zn(2+) signaling in the hippocampus. Front Aging Neurosci 6:26

    PubMed  PubMed Central  Google Scholar 

  • Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114:795–805

    Article  CAS  Google Scholar 

  • Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol 17:318–324

    Article  CAS  Google Scholar 

  • Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258

    Article  CAS  Google Scholar 

  • Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553:497–509

    Article  CAS  Google Scholar 

  • Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27:14265–14274

    Article  CAS  Google Scholar 

  • Vicario-Abejon C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18:7256–7271

    Article  CAS  Google Scholar 

  • von Bohlen und Halbach O (2010) Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2010.00036

    Article  PubMed  Google Scholar 

  • Wang L, Chang X, She L, Xu D, Huang W, Poo MM (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35:8384–8393

    Article  CAS  Google Scholar 

  • Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao GY, Zheng K, Lu B, Xu B (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32:14318–14330

    Article  Google Scholar 

  • Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, PAlmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fibers boutons in the hippocampus of mouse and monkeys. Proc Natl Acad Sci USA 94:12676–12681

    Article  CAS  Google Scholar 

  • Widmer HR, Hefti F (1994) Neurotrophin-4/5 promotes survival and differentiation of rat striatal neurons developing in culture. Eur J Neurosci 6:1669–1679

    Article  CAS  Google Scholar 

  • Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104(43):17210–17215

    Article  CAS  Google Scholar 

  • Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  CAS  Google Scholar 

  • Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22:7580–7585

    Article  CAS  Google Scholar 

  • Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76(Pt C):628–638

    Article  Google Scholar 

  • Zagrebelsky M, Schweigreiter R, Bandtlow CE, Schwab ME, Korte M (2010) Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci 30:13220–13234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Diane Mundil, Tania Meßerschmidt and Heike Kessler for their excellent technical assistance and to Martin Rothkegel for experimental advice. This work was supported by the DFG Grant KO 1674/5-1 (to M.K. and M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Zagrebelsky or Martin Korte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 1521 KB)

Supplementary material 2 (EPS 1026 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagrebelsky, M., Gödecke, N., Remus, A. et al. Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain Struct Funct 223, 3689–3709 (2018). https://doi.org/10.1007/s00429-018-1715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1715-0

Keywords

Navigation