Skip to main content
Log in

Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellum, a hindbrain motor center, also participates in regulating nonsomatic visceral activities such as feeding control. However, the underlying neural mechanism is largely unknown. Here, we investigate whether the cerebellar medial nucleus (MN), one of the final outputs of the cerebellum, could directly project to and modulate the feeding-related neurons in the ventromedial hypothalamic nucleus (VMN), which has been traditionally implicated in feeding behavior, energy balance, and body weight regulation. The retrograde tracing results show that both GABAergic and glutamatergic projection neurons in the cerebellar MN send direct projections to the VMN. Electrical stimulation of cerebellar MN elicits an inhibitory, excitatory or biphasic response of VMN neurons. Interestingly, the VMN neurons modulated by cerebellar MN afferents not only receive phasic and tonic inputs from the gastric vagal nerves, but also are sensitive to peripheral glycemia and ghrelin signals. Moreover, a summation of inputs from the cerebellar MN and gastric vagal afferents occurs on single glycemia/ghrelin-sensitive neurons in the VMN, and the immunostaining result show that the axons from the cerebellar MN and the projections from the nucleus tractus solitarius, which conveys the gastric vagal inputs to hypothalamus, converge on single VMN glycemia/ghrelin-sensitive neurons. These results demonstrate that the somatic information forwarded by the cerebellar MN, together with the feeding signals from periphery, converge onto single VMN neurons, suggesting that a somatic-visceral integration related to feeding may occur in the VMN and the cerebellum may actively participate in the feeding regulation through the direct cerebellar MN-VMN projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ball GG, Micco DJ Jr, Berntson GG (1974) Cerebellar stimulation in the rat: complex stimulation-bound oral behaviors and self-stimulation. Physiol Behav 13:123–127

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26:393–428

    Article  PubMed  Google Scholar 

  • Bray GA (2000) Afferent signals regulating food intake. Proc Nutr Soc 59:373–384

    Article  CAS  PubMed  Google Scholar 

  • Campfield LA, Smith FJ (2003) Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 83:25–58

    Article  CAS  PubMed  Google Scholar 

  • Cavdar S, Onat F, Aker R, Sehirli U, San T, Yananli HR (2001a) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavdar S, San T, Aker R, Sehirli U, Onat F (2001b) Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 198:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombel C, Lalonde R, Caston J (2002) The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res 950:231–238

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, Del Bo R, Strazzer S, Bresolin N, Comi GP (2006) Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 24:975–985

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Demirtas-Tatlidede A, Freitas C, Pascual-Leone A, Schmahmann JD (2011) Modulatory effects of theta burst stimulation on cerebellar nonsomatic functions. Cerebellum 10:495–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrichs E, Haines DE (2002) Possible pathways for cerebellar modulation of autonomic responses: micturition. Scand J Urol Nephrol 36 (Suppl 210):16–20

    Article  Google Scholar 

  • Dietrichs E, Haines DE, Roste GK, Roste LS (1994) Hypothalamocerebellar and cerebellohypothalamic projections–circuits for regulating nonsomatic cerebellar activity? Histol Histopathol 9:603–614

    CAS  PubMed  Google Scholar 

  • Doba N, Reis DJ (1972) Cerebellum: role in reflex cardiovascular adjustment to posture. Brain Res 39:495–500

    Article  CAS  PubMed  Google Scholar 

  • Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221:1139–1155

    Article  CAS  PubMed  Google Scholar 

  • Gautier JF, Chen K, Uecker A, Bandy D, Frost J, Salbe AD, Pratley RE, Lawson M, Ravussin E, Reiman EM, Tataranni PA (1999) Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am J Clin Nutr 70:806–810

    CAS  PubMed  Google Scholar 

  • Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107

    Article  CAS  PubMed  Google Scholar 

  • Himmi T, Boyer A, Orsini JC (1988) Changes in lateral hypothalamic neuronal activity accompanying hyper- and hypoglycemias. Physiol Behav 44:347–354

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview: ghrelin and the regulation of energy balance–a hypothalamic perspective. Endocrinology 142:4163–4169

    CAS  Google Scholar 

  • Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977

    Article  CAS  PubMed  Google Scholar 

  • Hulten L (1969) Extrinsic nervous control of colonic motility and blood flow. An experimental study in the cat. Acta Physiol Scand Suppl 335:1–116

    CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Katafuchi T, Koizumi K (1990) Fastigial inputs to paraventricular neurosecretory neurones studied by extra- and intracellular recordings in rats. J Physiol 421:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Nishino H (1976) Circadian and other rhythmic activity of neurones in the ventromedial nuclei and lateral hypothalamic area. J Physiol 263:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  • Li B, Guo CL, Tang J, Zhu JN, Wang JJ (2009) Cerebellar fastigial nuclear inputs and peripheral feeding signals converge on neurons in the dorsomedial hypothalamic nucleus. Neurosignals 17:132–143

    Article  CAS  PubMed  Google Scholar 

  • Lisander B, Martner J (1975a) Effects on gastric motility from the cerebellar fastigial nucleus. Acta Physiol Scand 94:368–377

    Article  CAS  PubMed  Google Scholar 

  • Lisander B, Martner J (1975b) Integrated somatomotor, cardiovascular and gastrointestinal adjustments induced from the cerebellar fastigial nucleus. Acta Physiol Scand 94:358–367

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gao JH, Liu HL, Fox PT (2000) The temporal response of the brain after eating revealed by functional MRI. Nature 405:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Mahler P, Guastavino JM, Jacquart G, Strazielle C (1993) An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav 54:1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Manto M, Pandolfo M (2002) The cerebellum and its disorders. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Manto M, Haines D (2012) Cerebellar research: two centuries of discoveries. Cerebellum 11:446–448

    Article  PubMed  Google Scholar 

  • Martin JH, Cooper SE, Hacking A, Ghez C (2000) Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol 83:1886–1899

    CAS  PubMed  Google Scholar 

  • Martner J (1975a) Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiol Scand Suppl 425:1–42

    CAS  PubMed  Google Scholar 

  • Martner J (1975b) Influences on colonic and small intestinal motility by the cerebellar fastigial nucleus. Acta Physiol Scand 94:82–94

    Article  CAS  PubMed  Google Scholar 

  • Milak MS, Shimansky Y, Bracha V, Bloedel JR (1997) Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol 78:939–959

    CAS  PubMed  Google Scholar 

  • Min BI, Oomura Y, Katafuchi T (1989) Responses of rat lateral hypothalamic neuronal activity to fastigial nucleus stimulation. J Neurophysiol 61:1178–1184

    CAS  PubMed  Google Scholar 

  • Oomura Y, Ono T, Ooyama H, Wayner MJ (1969) Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222:282–284

    Article  CAS  PubMed  Google Scholar 

  • Orsini J, Wiser A, Himmi T, Boyer A, Perrin J (1991) Sensitivity of lateral hypothalamic neurons to glycemic level: possible involvement of an indirect adrenergic mechanism. Brain Res Bull 26:473–478

    Article  CAS  PubMed  Google Scholar 

  • Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, Fox PT (2000) Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA 97:2332–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, San Diego, CA

    Google Scholar 

  • Perkins MN, Rothwell NJ, Stock MJ, Stone TW (1981) Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289:401–402

    Article  CAS  PubMed  Google Scholar 

  • Plata-Salaman CR (1998) Hypothalamus and the control of feeding: fifteen decades of direct association. Nutrition 14:67–70

    Article  CAS  PubMed  Google Scholar 

  • Pu YM, Wang JJ, Wang T, Yu QX (1995) Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area. Neuroreport 6:985–988

    Article  CAS  PubMed  Google Scholar 

  • Reis DJ, Golanov EV (1997) Autonomic and vasomotor regulation. Int Rev Neurobiol 41:121–149

    Article  CAS  PubMed  Google Scholar 

  • Scalera G (1991) Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. J Physiol (Paris) 85:214–222

    CAS  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, Kabani N, Toga A, Evans A, Petrides M (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260

    Article  CAS  PubMed  Google Scholar 

  • Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16:866–873

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Takayama K, Johno Y, Hayashi K, Yakabi K, Tanaka T, Ro S (2007) Expression of c-Fos protein in the brain after intravenous injection of ghrelin in rats. Neurosci Lett 417:292–296

    Article  CAS  PubMed  Google Scholar 

  • Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA 96:4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teves D, Videen TO, Cryer PE, Powers WJ (2004) Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA 101:6217–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67:269–275

    Article  PubMed  Google Scholar 

  • Wang J, Pu Y, Wang T (1997) Influences of cerebellar interpositus nucleus and fastigial nucleus on neuronal activity of lateral hypothalamic area. Sci China C Life Sci 40:176–183

    Article  CAS  PubMed  Google Scholar 

  • Wen YQ, Zhu JN, Zhang YP, Wang JJ (2004) Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett 370:25–29

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Frazier DT (2000) Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1004

    CAS  PubMed  Google Scholar 

  • Yettefti K, Orsini JC, Perrin J (1997) Characteristics of glycemia-sensitive neurons in the nucleus tractus solitarii: possible involvement in nutritional regulation. Physiol Behav 61:93–100

    Article  CAS  PubMed  Google Scholar 

  • Yuan CS, Barber WD (1992) Hypothalamic unitary responses to gastric vagal input from the proximal stomach. Am J Physiol 262:G74–G80

    CAS  PubMed  Google Scholar 

  • Yuan CS, Barber WD (1996) Interactions of gastric vagal and peripheral nerves on single neurons of lateral hypothalamus in the cat. Am J Physiol 271:G858–G865

    CAS  PubMed  Google Scholar 

  • Zhang YP, Ma C, Wen YQ, Wang JJ (2003) Convergence of gastric vagal and cerebellar fastigial nuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area in the rat. Neurosci Res 45:9–16

    Article  PubMed  Google Scholar 

  • Zhang YP, Zhu JN, Chen K, Li HZ, Wang JJ (2005) Neurons in the rat lateral hypothalamic area integrate information from the gastric vagal nerves and the cerebellar interpositus nucleus. Neurosignals 14:234–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ (2011) A role for orexin in central vestibular motor control. Neuron 69:793–804

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, Wang JJ (2016) Selective modulation of histaminergic inputs on projection neurons of cerebellum rapidly promotes motor coordination via HCN channels. Mol Neurobiol 53:1386–1401

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Wang JJ, Zhu JN (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JN, Wang JJ (2008) The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol 28:469–478

    Article  PubMed  Google Scholar 

  • Zhu JN, Zhang YP, Song YN, Wang JJ (2004) Cerebellar interpositus nuclear and gastric vagal afferent inputs reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res 48:405–417

    Article  PubMed  Google Scholar 

  • Zhu JN, Li HZ, Ding Y, Wang JJ (2006a) Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res 84:1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ (2006b) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106

    Article  PubMed  Google Scholar 

  • Zhu JN, Guo CL, Li HZ, Wang JJ (2007) Dorsomedial hypothalamic nucleus neurons integrate important peripheral feeding-related signals in rats. J Neurosci Res 85:3193–3204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant numbers 31330033, 91332124, 31471112, 31500848, and NSFC/RGC Joint Research Scheme 31461163001); the State Educational Ministry of China (SRFDP/RGC ERG Grant 20130091140003, and Fundamental Research Funds for the Central Universities 020814380004 and 20620140565); the Natural Science Foundation of Jiangsu Province, China (Grant numbers BK2011014, BK20140599 and BK20151384); and the China Postdoctoral Sciences Foundation (Grant numbers 2011M500089, 2013T60520).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Jun Wang or Jing-Ning Zhu.

Additional information

B. Li and Q.-X. Zhuang contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Supplementary material 2 (GIF 25784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhuang, QX., Gao, HR. et al. Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats. Brain Struct Funct 222, 957–971 (2017). https://doi.org/10.1007/s00429-016-1257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1257-2

Keywords

Navigation