Skip to main content
Log in

Sub-synaptic localization of Cav3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

T-type calcium channels (Cav3) are key mediators of thalamic bursting activity, but also regulate single cells excitability, dendritic integration, synaptic strength and transmitter release. These functions are strongly influenced by the subcellular and subsynaptic localization of Cav3 channels along the somatodendritic domain of thalamic cells. In Parkinson’s disease, T-type calcium channels dysfunction in the basal ganglia-receiving thalamic nuclei likely contributes to pathological thalamic bursting activity. In this study, we analyzed the cellular, subcellular, and subsynaptic localization of the Cav3.1 channel in the ventral anterior (VA) and centromedian/parafascicular (CM/Pf) thalamic nuclei, the main thalamic targets of basal ganglia output, in normal and parkinsonian monkeys. All thalamic nuclei displayed strong Cav3.1 neuropil immunoreactivity, although the intensity of immunolabeling in CM/Pf was significantly lower than in VA. Ultrastructurally, 70–80 % of the Cav3.1-immunoreactive structures were dendritic shafts. Using immunogold labeling, Cav3.1 was commonly found perisynaptic to asymmetric and symmetric axo-dendritic synapses, suggesting a role of Cav3.1 in regulating excitatory and inhibitory neurotransmission. Significant labeling was also found at non-synaptic sites along the plasma membrane of thalamic neurons. There was no difference in the overall pattern and intensity of immunostaining between normal and parkinsonian monkeys, suggesting that the increased rebound bursting in the parkinsonian state is not driven by changes in Cav3.1 expression. Thus, T-type calcium channels are located to subserve neuronal bursting, but also regulate glutamatergic and non-glutamatergic transmission along the whole somatodendritic domain of basal ganglia-receiving neurons of the primate thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Ardashov OV, Pavlova AV, Il’ina IV, Morozova EA, Korchagina DV, Karpova EV, Volcho KP, Tolstikova TG, Salakhutdinov NF (2011) Highly potent activity of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol in animal models of Parkinson’s disease. J Med Chem 54:3866–3874

    Article  CAS  PubMed  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  PubMed  Google Scholar 

  • Belardetti F, Zamponi GW (2012) Calcium channels as therapeutic targets. Wiley Interdiscip Rev Membr Transp Signal 1:433–451

    Article  CAS  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    CAS  PubMed  Google Scholar 

  • Blackstad T, Karagülle T, Ottersen O (1990) MORFOREL, a computer program for two-dimensional analysis of micrographs of biological specimens, with emphasis on immunogold preparations. Comput Biol Med 20:15–34

    Article  CAS  PubMed  Google Scholar 

  • Bladen C, McDaniel SW, Gadotti VM, Petrov RR, Berger ND, Diaz P, Zamponi GW (2015) Characterization of novel cannabinoid based T-type calcium channel blockers with analgesic effects. ACS Chem Neurosci 6:277–287

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Smith A, Berger S, Fisher LJ, Gage FH (1990) Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience 36:1–14

    Article  CAS  PubMed  Google Scholar 

  • Cain SM, Snutch TP (2013) T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 1828:1572–1578

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  • Cavelier P, Bossu JL (2003) Dendritic low-threshold Ca2+ channels in rat cerebellar Purkinje cells: possible physiological implications. Cerebellum 2:196–205

    Article  CAS  PubMed  Google Scholar 

  • Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D (1995) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J Neurophysiol 73:2553–2557

    CAS  PubMed  Google Scholar 

  • Connelly WM, Crunelli V, Errington AC (2015) The global spike: conserved dendritic properties enable unique Ca2+ spike generation in low threshold spiking neurons. J Neurosci 35:15505–15522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    CAS  PubMed  Google Scholar 

  • Devergnas A, Pittard D, Bliwise D, Wichmann T (2014) Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiol Dis 68:156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devergnas A, Chen E, Ma Y, Hamada I, Pittard D, Kammermeier S, Mullin AP, Faundez V, Lindsley CW, Jones C, Smith Y, Wichmann T (2016) Anatomical localization of Cav3.1 calcium channels and electrophysiological effects of T-type calcium channel blockade in the motor thalamus of MPTP-treated monkeys. J Neurophysiol 115:470–485

    Article  PubMed  Google Scholar 

  • Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington AC, Renger JJ, Uebele VN, Crunelli V (2010) State-dependent firing determines Intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 30:14843–14853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Hu X, Smith Y, Wichmann T (2011) Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys. Exp Neurol 229:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Hu X, Rommelfanger K, Pare JF, Khan Z, Smith Y, Wichmann T (2014) Localization and function of dopamine receptors in the subthalamic nucleus and normal and parkinsonian monkeys. J Neurophysiol 112:467–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Garber J, Barbee R, Bielitzki J, Clayton L, Donovan J, Hendriksen C, Kohn D, Lipman N, Locke P, Melcher J, Quimby F, Turner P, Wood G, Wurbel H (2011) Guide for the care and use of laboratory animals, 8th edn. National Academy Press (US), Washington (DC)

    Google Scholar 

  • Gauck V, Thomann M, Jaeger D, Borst A (2001) Spatial distribution of low- and high-voltage-activated calcium currents in neurons of the deep cerebellar nuclei. J Neurosci 21:Rc158

    CAS  PubMed  Google Scholar 

  • Gonzales KK, Pare JF, Wichmann T, Smith Y (2013) GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 521:2502–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray EG (1959) Axosomatic and axodendritic synapses in the cerebral cortex. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillery RW (2000) Early electron microscopic observations of synaptic structures in the cerebral cortex: a view of the contributions made by George Gray (1924–1999). Trends Neurosci 23:594–598

    Article  CAS  PubMed  Google Scholar 

  • Guyon A, Leresche N (1995) Modulation by different GABAB receptor types of voltage-activated calcium currents in rat thalamocortical neurons. J Physiol 485:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamos JE, Van Horn SC, Raczkowski D, Uhlrich DJ, Sherman SM (1985) Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317:618–621

    Article  CAS  PubMed  Google Scholar 

  • Hanson JE, Smith Y (1999) Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci 19:6488–6496

    CAS  PubMed  Google Scholar 

  • Hildebrand ME, Isope P, Miyazaki T, Nakaya T, Garcia E, Feltz A, Schneider T, Hescheler J, Kano M, Sakimura K, Watanabe M, Dieudonne S, Snutch TP (2009) Functional coupling between mGluR1 and Cav3.1 T-type calcium channels contributes to parallel fiber-induced fast calcium signaling within Purkinje cell dendritic spines. J Neurosci 29:9668–9682

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Huang S, Peers C, Du X, Zhang H, Gamper N (2015) GABAB receptors inhibit low-voltage activated and high-voltage activated Ca(2+) channels in sensory neurons via distinct mechanisms. Biochem Biophys Res Commun 465:188–193

    Article  CAS  PubMed  Google Scholar 

  • Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348

    Article  CAS  PubMed  Google Scholar 

  • Ilinsky IA, Ambardekar AV, Kultas-Ilinsky K (1999) Organization of projections from the anterior pole of the nucleus reticularis thalami (NRT) to subdivisions of the motor thalamus: light and electron microscopic studies in the rhesus monkey. J Comp Neurol 409:369–384

    Article  CAS  PubMed  Google Scholar 

  • Isope P, Hildebrand ME, Snutch TP (2012) Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. Cerebellum 11:651–665

    Article  CAS  PubMed  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A, Siegemund M, Cancro A, Lanz M, Llinás R, Ribary U, Kronberg E, Schulman J, Zonenshayn M (2001) Thalamocortical dysrhythmia II. Clinical and surgical aspects. Thalamus Relat Syst 1:245–254

    Google Scholar 

  • Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Kavalali ET, Zhuo M, Bito H, Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18:651–663

    Article  CAS  PubMed  Google Scholar 

  • Kovacs K, Sik A, Ricketts C, Timofeev I (2010) Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Ca(v)3.1 and Ca(v)3.3) in reticular thalamic neurons of the cat. J Neurosci Res 88:448–460

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto E, Fujiyama F, Nakamura KC, Tanaka Y, Hioki H, Kaneko T (2011) Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci 33:95–109

    Article  PubMed  Google Scholar 

  • Kuwajima M, Dehoff MH, Furuichi T, Worley PF, Hall RA, Smith Y (2007) Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion. J Neurosci 27:6249–6260

    Article  CAS  PubMed  Google Scholar 

  • Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384

    Article  CAS  PubMed  Google Scholar 

  • Lambert RC, Bessaih T, Crunelli V, Leresche N (2014) The many faces of T-type calcium channels. Pflugers Arch 466:415–423

    Article  CAS  PubMed  Google Scholar 

  • Lanciego J, Vazquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217:613–666

    Article  PubMed  Google Scholar 

  • Liu XB, Munoz A, Jones EG (1998) Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J Comp Neurol 395:450–465

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Warren RA, Jones EG (1995) Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol 352:187–202

    Article  CAS  PubMed  Google Scholar 

  • Liu MG, Lu D, Wang Y, Chen XF, Li Z, Xu Y, Jin JH, Wang RR, Chen J (2012) Counteracting roles of metabotropic glutamate receptor subtypes 1 and 5 in regulation of pain-related spatial and temporal synaptic plasticity in rat entorhinal-hippocampal pathways. Neurosci Lett 507:38–42

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    Article  CAS  PubMed  Google Scholar 

  • Llinás R, Ribary U, Jeanmonod D, Cancro R, Kronberg E, Schulman J, Zonenshayn M, Magnin M, Morel A, Siegmund M (2001) Thalamocortical dysrhythmia I. Functional and imaging aspects. Thalamus Relat Syst 1:237–244

    Article  Google Scholar 

  • Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96:549–564

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci 91:5207–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathai A, Ma Y, Paré J-F, Villalba RM, Wichmann T, Smith Y (2015) Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 138:946–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazloom M, Smith Y (2006) Synaptic microcircuitry of tyrosine hydroxylase-containing neurons and terminals in the striatum of MPTP-treated monkeys. J Comp Neurol 495:453–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  • McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594

    Article  PubMed  Google Scholar 

  • Mitrano DA, Pare JF, Smith Y (2010) Ultrastructural relationships between cortical, thalamic, and amygdala glutamatergic inputs and group I metabotropic glutamate receptors in the rat accumbens. J Comp Neurol 518:1315–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munsch T, Budde T, Pape HC (1997) Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. NeuroReport 8:2411–2418

    Article  CAS  PubMed  Google Scholar 

  • Nelson MT, Todorovic SM, Perez-Reyes E (2006) The role of T-type calcium channels in epilepsy and pain. Curr Pharm Des 12:2189–2197

    Article  CAS  PubMed  Google Scholar 

  • Ohara PT, Chazal G, Ralston HJ III (1989) Ultrastructural analysis of GABA-immunoreactive elements in the monkey thalamic ventrobasal complex. J Comp Neurol 283:541–558

    Article  CAS  PubMed  Google Scholar 

  • Paquet M, Smith Y (2003) Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 23:7659–7669

    CAS  PubMed  Google Scholar 

  • Parajuli LK, Fukazawa Y, Watanabe M, Shigemoto R (2010) Subcellular distribution of alpha1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus. J Comp Neurol 518:4362–4374

    Article  PubMed  Google Scholar 

  • Pare D, Curro’Dossi R, Steriade M (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35:217–226

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Huang X-F, Toga AW (1999) The rhesus monkey brain in stereotaxic coordinates, 1st edn. Academic Press, San Diego, CA

    Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes E, Lory P (2006) Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets 5:605–609

    Article  CAS  PubMed  Google Scholar 

  • Pessiglione M, Guehl D, Rolland AS, Francois C, Hirsch EC, Feger J, Tremblay L (2005) Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 25:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, Webster HD (eds) (1991) The fine structure of the nervous system: neurons and their supporting cells. Oxford University Press, New York

    Google Scholar 

  • Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  • Ralston HJ (1971) Evidence for presynaptic dendrites and a proposal for their mechanism of action. Nature 230:585–587

    Article  PubMed  Google Scholar 

  • Rhodes PA, Llinas R (2005) A model of thalamocortical relay cells. J Physiol 565:765–781

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Shipe WD, Barrow JC, Yang ZQ, Lindsley CW, Yang FV, Schlegel KA, Shu Y, Rittle KE, Bock MG, Hartman GD, Tang C, Ballard JE, Kuo Y, Adarayan ED, Prueksaritanont T, Zrada MM, Uebele VN, Nuss CE, Connolly TM, Doran SM, Fox SV, Kraus RL, Marino MJ, Graufelds VK, Vargas HM, Bunting PB, Hasbun-Manning M, Evans RM, Koblan KS, Renger JJ (2008) Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca2+ channel antagonist. J Med Chem 51:3692–3695

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5

    PubMed  PubMed Central  Google Scholar 

  • Song WJ, Baba Y, Otsuka T, Murakami F (2000) Characterization of Ca(2+) channels in rat subthalamic nucleus neurons. J Neurophysiol 84:2630–2637

    CAS  PubMed  Google Scholar 

  • Steriade M, Llinás RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    CAS  PubMed  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Raju DV, Hall RA, Smith Y (2006) GABAB receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABABR1 and GABABR2 in the monkey thalamus. J Comp Neurol 496:269–287

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317

    CAS  PubMed  Google Scholar 

  • Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang L, Morrison R, Santomango T, Byers F, Brewer K, Aldrich JS, Yu H, Dawson ES, Li M, McManus O, Jones CK, Daniels JS, Hopkins CR, Xie XS, Conn PJ, Weaver CD, Lindsley CW (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson’s disease. ACS Chem Neurosci 2:730–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZQ, Barrow JC, Shipe WD, Schlegel KA, Shu Y, Yang FV, Lindsley CW, Rittle KE, Bock MG, Hartman GD, Uebele VN, Nuss CE, Fox SV, Kraus RL, Doran SM, Connolly TM, Tang C, Ballard JE, Kuo Y, Adarayan ED, Prueksaritanont T, Zrada MM, Marino MJ, Graufelds VK, DiLella AG, Reynolds IJ, Vargas HM, Bunting PB, Woltmann RF, Magee MM, Koblan KS, Renger JJ (2008) Discovery of 1,4-substituted piperidines as potent and selective inhibitors of T-type calcium channels. J Med Chem 51:6471–6477

    Article  CAS  PubMed  Google Scholar 

  • Yang YC, Tai CH, Pan MK, Kuo CC (2014) The T-type calcium channel as a new therapeutic target for Parkinson’s disease. Pflugers Arch 466:747–755

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Godwin DW, O’Malley DM, Adams PR (1997) Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relaycells. J Neurophysiol 77:2816–2825

    CAS  PubMed  Google Scholar 

  • Zirh TA, Lenz FA, Reich SG, Dougherty PM (1998) Patterns of bursting occurring in thalamic cells during parkinsonian tremor. Neuroscience 83:107–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported through grants from the NIH/NINDS [R01 NS054976 (TW/YS) and P50 NS071669 (Udall Center Grant, TW/YS)], a grant from the NIH BP ENDURE [SP00010548 (EC/YS)] and a grant from the NIH/ORIP to the Yerkes Center (P51 OD011132). We thank Susan Jenkins for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoland Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E., Paré, JF., Wichmann, T. et al. Sub-synaptic localization of Cav3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys. Brain Struct Funct 222, 735–748 (2017). https://doi.org/10.1007/s00429-016-1242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1242-9

Keywords

Navigation