Skip to main content

Advertisement

Log in

Ascending serotonin neuron diversity under two umbrellas

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Forebrain serotonin relevant for many psychological disorders arises in the hindbrain, primarily within the dorsal and median raphe nuclei (DR and MR). These nuclei are heterogeneous, containing several distinct groups of serotonin neurons. Here, new insight into the afferent and efferent connectivity of these areas is reviewed in correlation with their developmental origin. These data suggest that the caudal third of the DR, the area originally designated B6, may be misidentified as part of the DR as it shares many features of connectivity with the MR. By considering the rostral DR independently and affiliating the B6 to the MR, the diverse subgroups of serotonin neurons can be arranged with more coherence into two umbrella groups, each with distinctive domains of influence. Serotonin neurons within the rostral DR are uniquely interconnected with brain areas associated with emotion and motivation such as the amygdala, accumbens and ventral pallidum. In contrast serotonin neurons in the B6 and MR are characterized by their dominion over the septum and hippocampus. This distinction between the DR and B6/MR parallels their developmental origin and likely impacts their role in both behavior and psychopathology. Implications and further subdivisions within these areas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aizawa H, Yanagihara S, Kobayashi M, Niisato K, Takekawa T, Harukuni R, McHugh TJ, Fukai T, Isomura Y, Okamoto H (2013) The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J Neurosci 33(20):8909–8921. doi:10.1523/JNEUROSCI.4369-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Merchan P, Sandoval JE, Sanchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferran JL, Martinez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218(5):1229–1277. doi:10.1007/s00429-012-0456-8

    Article  CAS  PubMed  Google Scholar 

  • Amo R, Fredes F, Kinoshita M, Aoki R, Aizawa H, Agetsuma M, Aoki T, Shiraki T, Kakinuma H, Matsuda M, Yamazaki M, Takahoko M, Tsuboi T, Higashijima S, Miyasaka N, Koide T, Yabuki Y, Yoshihara Y, Fukai T, Okamoto H (2014) The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 84(5):1034–1048. doi:10.1016/j.neuron.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  • Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM (2012) Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 22(1):1–16. doi:10.1016/j.euroneuro.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  • Bach-Mizrachi H, Underwood MD, Tin A, Ellis SP, Mann JJ, Arango V (2008) Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol psychiatry 13(5):507–513. doi:10.1038/sj.mp.4002143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460. doi:10.1038/sj.npp.1300320

    Article  CAS  PubMed  Google Scholar 

  • Bang SJ, Jensen P, Dymecki SM, Commons KG (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35(1):85–96. doi:10.1111/j.1460-9568.2011.07936.x

    Article  PubMed  Google Scholar 

  • Bland BH, Bland CE, MacIver MB (2015) Median raphe stimulation-induced motor inhibition concurrent with suppression of type 1 and type 2 hippocampal theta. Hippocampus. doi:10.1002/hipo.22521

    Google Scholar 

  • Boldrini M, Underwood MD, Mann JJ, Arango V (2008) Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res 42(6):433–442. doi:10.1016/j.jpsychires.2007.05.004

    Article  PubMed  Google Scholar 

  • Brust RD, Corcoran AE, Richerson GB, Nattie E, Dymecki SM (2014) Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep 9(6):2152–2165. doi:10.1016/j.celrep.2014.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carboni E, Acquas E, Leone P, Perezzani L, Di Chiara G (1988) 5-HT3 receptor antagonists block morphine- and nicotine-induced place-preference conditioning. Eur J Pharmacol 151(1):159–160

    Article  CAS  PubMed  Google Scholar 

  • Cheeta S, Irvine EE, Kenny PJ, File SE (2001) The dorsal raphe nucleus is a crucial structure mediating nicotine’s anxiolytic effects and the development of tolerance and withdrawal responses. Psychopharmacology 155(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Cohen JY, Amoroso MW, Uchida N (2015) Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4. doi:10.7554/eLife.06346

  • Commons KG (2008) Evidence for topographically organized endogenous 5-HT-1A receptor-dependent feedback inhibition of the ascending serotonin system. Eur J Neurosci 27(10):2611–2618

    Article  PubMed  PubMed Central  Google Scholar 

  • Commons KG (2015) Two major network domains in the dorsal raphe nucleus. J Comp Neurol. doi:10.1002/cne.23748

    PubMed  PubMed Central  Google Scholar 

  • Crooks R, Jackson J, Bland BH (2012) Dissociable pathways facilitate theta and non-theta states in the median raphe–septohippocampal circuit. Hippocampus 22(7):1567–1576. doi:10.1002/hipo.20999

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399

    Article  CAS  PubMed  Google Scholar 

  • Deakin JF, Graeff FG (1991) 5-HT and mechanisms of defence. J Psychopharmacol 5(4):305–315. doi:10.1177/026988119100500414

    Article  CAS  PubMed  Google Scholar 

  • Diaz SL, Narboux-Neme N, Trowbridge S, Scotto-Lomassese S, Kleine Borgmann FB, Jessberger S, Giros B, Maroteaux L, Deneris E, Gaspar P (2013) Paradoxical increase in survival of newborn neurons in the dentate gyrus of mice with constitutive depletion of serotonin. Eur J Neurosci 38(5):2650–2658. doi:10.1111/ejn.12297

    Article  PubMed  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103(21):8233–8238. doi:10.1073/pnas.0601992103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez SP, Cauli B, Cabezas C, Muzerelle A, Poncer JC, Gaspar P (2015) Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct Funct. doi:10.1007/s00429-015-1142-4

    Google Scholar 

  • Fornal CA, Metzler CW, Marrosu F, Ribiero-do-Valle LE, Jacobs BL (1996) A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements. Brain Res 716(1–2):123–133. doi:10.1016/0006-8993(96)00006-6

    Article  CAS  PubMed  Google Scholar 

  • Fox SR, Deneris ES (2012) Engrailed is required in maturing serotonin neurons to regulate the cytoarchitecture and survival of the dorsal raphe nucleus. J Neurosci 32(23):7832–7842. doi:10.1523/JNEUROSCI.5829-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funato H, Sato M, Sinton CM, Gautron L, Williams SC, Skach A, Elmquist JK, Skoultchi AI, Yanagisawa M (2010) Loss of Goosecoid-like and DiGeorge syndrome critical region 14 in interpeduncular nucleus results in altered regulation of rapid eye movement sleep. Proc Natl Acad Sci USA 107(42):18155–18160. doi:10.1073/pnas.1012764107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar P, Lillesaar C (2012) Probing the diversity of serotonin neurons. Philos Trans R Soc Lond B Biol Sci 367(1601):2382–2394. doi:10.1098/rstb.2011.0378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutagny R, Loureiro M, Jackson J, Chaumont J, Williams S, Isope P, Kelche C, Cassel JC, Lecourtier L (2013) Interactions between the lateral habenula and the hippocampus: implication for spatial memory processes. Neuropsychopharmacology 38(12):2418–2426. doi:10.1038/npp.2013.142

    Article  PubMed  PubMed Central  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Hale MW, Lowry CA (2011) Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213(2–3):243–264. doi:10.1007/s00213-010-2089-z

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22(3):1020–1026

    CAS  PubMed  Google Scholar 

  • Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF (2003) Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 23(3):1019–1025

    CAS  PubMed  Google Scholar 

  • Hayashi K, Nakao K, Nakamura K (2015) Appetitive and aversive information coding in the primate dorsal raphe nucleus. J Neurosci 35(15):6195–6208. doi:10.1523/JNEUROSCI.2860-14.2015

    Article  CAS  PubMed  Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243(3):363–380

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72(1):165–229

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21(2 Suppl):9S–15S. doi:10.1016/S0893-133X(99)00012-3

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11(4):417–419. doi:10.1038/nn2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney GG, Kocsis B, Vertes RP (1994) Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane-anesthetized rat. Brain Res 654(1):96–104

    Article  CAS  PubMed  Google Scholar 

  • Kirby LG, Lucki I (1997) Interaction between the forced swimming test and fluoxetine treatment on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the rat. J Pharmacol Exp Ther 282(2):967–976

    CAS  PubMed  Google Scholar 

  • Kirk IJ, Mackay JC (2003) The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks. Cortex 39(4–5):993–1008

    Article  PubMed  Google Scholar 

  • Kocsis B, Vertes RP (1992) Dorsal raphe neurons: synchronous discharge with the theta rhythm of the hippocampus in the freely behaving rat. J Neurophysiol 68(4):1463–1467

    CAS  PubMed  Google Scholar 

  • Kocsis B, Vertes RP (1996) Midbrain raphe cell firing and hippocampal theta rhythm in urethane-anaesthetized rats. Neuroreport 7(18):2867–2872

    Article  CAS  PubMed  Google Scholar 

  • Lechin F, van der Dijs B, Hernandez-Adrian G (2006) Dorsal raphe vs. median raphe serotonergic antagonism. Anatomical, physiological, behavioral, neuroendocrinological, neuropharmacological and clinical evidences: relevance for neuropharmacological therapy. Prog Neuropsychopharmacol Biol Psychiatry 30(4):565–585. doi:10.1016/j.pnpbp.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  • Li H, Scholl JL, Tu W, Hassell JE, Watt MJ, Forster GL, Renner KJ (2014) Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. Eur J Neurosci 40(11):3684–3692. doi:10.1111/ejn.12735

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, Feng Q, Zhang JE, Wang D, Zeng J, Bao J, Kim JY, Chen ZF, El Mestikawy S, Luo M (2014) Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81(6):1360–1374. doi:10.1016/j.neuron.2014.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28(9):1562–1571. doi:10.1038/sj.npp.1300234

    Article  CAS  PubMed  Google Scholar 

  • Maru E, Takahashi LK, Iwahara S (1979) Effects of median raphe nucleus lesions on hippocampal EEG in the freely moving rat. Brain Res 163(2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Hikosaka O (2009) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12(1):77–84. doi:10.1038/nn.2233

    Article  CAS  PubMed  Google Scholar 

  • McDevitt RA, Hiroi R, Mackenzie SM, Robin NC, Cohn A, Kim JJ, Neumaier JF (2011) Serotonin 1B autoreceptors originating in the caudal dorsal raphe nucleus reduce expression of fear and depression-like behavior. Biol Psychiatry 69(8):780–787. doi:10.1016/j.biopsych.2010.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RA, Chung SL, Richie CT, Harvey BK, Bonci A (2014) Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 8(6):1857–1869. doi:10.1016/j.celrep.2014.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Bernstein EL, Morin LP (1999) Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neuroscience 92(1):267–279

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen JD, Hay-Schmidt A, Larsen PJ (1997) Central innervation of the rat ependyma and subcommissural organ with special reference to ascending serotoninergic projections from the raphe nuclei. J Comp Neurol 384(4):556–568

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Miyazaki KW, Doya K (2012) The role of serotonin in the regulation of patience and impulsivity. Mol Neurobiol 45(2):213–224. doi:10.1007/s12035-012-8232-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A, Tabuchi S, Doya K (2014) Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr Biol 24(17):2033–2040. doi:10.1016/j.cub.2014.07.041

    Article  CAS  PubMed  Google Scholar 

  • Molliver ME (1987) Serotonergic neuronal systems: what their anatomic organization tells us about function. J Clin Psychopharmacol 7(6 Suppl):3S–23S

    CAS  PubMed  Google Scholar 

  • Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31(1):12–33

    Article  CAS  PubMed  Google Scholar 

  • Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2014) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct. doi:10.1007/s00429-014-0924-4

    PubMed  PubMed Central  Google Scholar 

  • Neckers LM, Schwartz JP, Wyatt RJ, Speciale SG (1979) Substance P afferents from the habenula innervate the dorsal raphe nucleus. Exp Brain Res 37(3):619–623

    Article  CAS  PubMed  Google Scholar 

  • Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M (2014) Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 8(4):1105–1118. doi:10.1016/j.celrep.2014.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi:10.1038/nature13186

    Article  CAS  PubMed  Google Scholar 

  • Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, Kim JC, Cook MN, Dymecki SM (2015) Multi-scale molecular deconstruction of the serotonin neuron system. Neuron 88(4):774–791. doi:10.1016/j.neuron.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  • Pan WX, McNaughton N (2004) The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol 74(3):127–166. doi:10.1016/j.pneurobio.2004.09.003

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin K (2004) The mouse brain in stereotaxic coordinates. Compact Second Edition edn, Elsevier

    Google Scholar 

  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Pollak Dorocic I, Furth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlen M, Meletis K (2014) A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83(3):663–678. doi:10.1016/j.neuron.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Quina LA, Tempest L, Ng L, Harris JA, Ferguson S, Jhou TC, Turner EE (2015) Efferent pathways of the mouse lateral habenula. J Comp Neurol 523(1):32–60. doi:10.1002/cne.23662

    Article  PubMed  Google Scholar 

  • Rasmussen K, Kallman MJ, Helton DR (1997) Serotonin-1A antagonists attenuate the effects of nicotine withdrawal on the auditory startle response. Synapse 27(2):145–152. doi:10.1002/(SICI)1098-2396(199710)27:2<145:AID-SYN5>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  • Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhe HG (2013) Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev 37(10 Pt 2):2529–2553. doi:10.1016/j.neubiorev.2013.07.018

  • Rygula R, Clarke HF, Cardinal RN, Cockcroft GJ, Xia J, Dalley JW, Robbins TW, Roberts AC (2014) Role of central serotonin in anticipation of rewarding and punishing outcomes: effects of selective amygdala or orbitofrontal 5-HT depletion. Cereb Cortex. doi:10.1093/cercor/bhu102

    PubMed  PubMed Central  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809. doi:10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  • Sego C, Goncalves L, Lima L, Furigo IC, Donato J Jr, Metzger M (2014) Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 522(7):1454–1484. doi:10.1002/cne.23533

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50(9):651–658

    Article  CAS  PubMed  Google Scholar 

  • Soubrie P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Res 9(2):319–364

    Google Scholar 

  • Sperling R, Commons KG (2011) Shifting topographic activation and 5-HT1A receptor-mediated inhibition of dorsal raphe serotonin neurons produced by nicotine exposure and withdrawal. Eur J Neurosci 33(10):1866–1875. doi:10.1111/j.1460-9568.2011.07677.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2011) Networks of the Brain. The MIT Press, Cambridge

    Google Scholar 

  • Stein DJ, Hollander E, Liebowitz MR (1993) Neurobiology of impulsivity and the impulse control disorders. J Neuropsychiatry Clin Neurosci 5(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Valentino RJ, Lucki I, Van Bockstaele E (2009) Corticotropin-releasing factor in the dorsal raphe nucleus: linking stress coping and addiction. Brain Res 1314:29–37. doi:10.1016/j.brainres.2009.09.100

    Article  PubMed  Google Scholar 

  • Valjakka A, Vartiainen J, Tuomisto L, Tuomisto JT, Olkkonen H, Airaksinen MM (1998) The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res Bull 47(2):171–184

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP (1981) An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J Neurophysiol 46(5):1140–1159

    CAS  PubMed  Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81(4):893–926

    Article  CAS  PubMed  Google Scholar 

  • Vertes R, Linley S (2008) Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. In: Monti J, Pandi-Perumal S, Jacobs B, Nutt D (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhauser Verlag, Switzerland

    Google Scholar 

  • Vertes RP, Hoover WB, Viana Di Prisco G (2004) Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev 3(3):173–200. doi:10.1177/1534582304273594

    Article  PubMed  Google Scholar 

  • Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L (2014) Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83(3):645–662. doi:10.1016/j.neuron.2014.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtshafter D (2001) The control of ingestive behavior by the median raphe nucleus. Appetite 36(1):99–105. doi:10.1006/appe.2000.0373

    Article  CAS  PubMed  Google Scholar 

  • Wu HH, Levitt P (2013) Prenatal expression of MET receptor tyrosine kinase in the fetal mouse dorsal raphe nuclei and the visceral motor/sensory brainstem. Dev Neurosci 35(1):1–16. doi:10.1159/000346367

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamakawa GR, Antle MC (2010) Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 31(11):1974–1983. doi:10.1111/j.1460-9568.2010.07228.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Patricia Gaspar for generous permission to use a modified figure from Muzerelle et al. as well as for comments on the manuscript. Additional thoughtful comments were provided by Drs. Daniel Ehlinger, Jessica Babb (Boston Children’s Hospital/Harvard Medical School), Dr. Bernat Kocsis (Beth Israel Deaconess/Harvard Medical School), Dr. Ben Okaty, Dr. Susan Dymecki (Harvard Medical School) and the reviewers; although all omissions, over-simplifications and errors remain my own. Funding provided by the National Institutes of Health Grants DA021801 and HD036379, the Brain and Behavior Foundation NARSAD Independent Investigator Award, and the Sara Page Mayo Foundation for Pediatric Pain Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn G. Commons.

Ethics declarations

Conflict of interest

Dr. Commons has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Commons, K.G. Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 221, 3347–3360 (2016). https://doi.org/10.1007/s00429-015-1176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1176-7

Keywords

Navigation