Skip to main content
Log in

Characterization of connexin36 gap junctions in the human outer retina

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Retinal connexins (Cx) form gap junctions (GJ) in key circuits that transmit average or synchronize signals. Expression of Cx36, -45, -50 and -57 have been described in many species but there is still a disconcerting paucity of information regarding the Cx makeup of human retinal GJs. We used well-preserved human postmortem samples to characterize Cx36 GJ constituent circuits of the outer plexiform layer (OPL). Based on their location, morphometric characteristics and co-localizations with outer retinal neuronal markers, we distinguished four populations of Cx36 plaques in the human OPL. Three of these were comprised of loosely scattered Cx36 plaques; the distalmost population 1 formed cone-to-rod GJs, population 2 in the mid-OPL formed cone-to-cone GJs, whereas the proximalmost population 4 likely connected bipolar cell dendrites. The fourth population (population 3) of Cx36 plaques conglomerated beneath cone pedicles and connected dendritic tips of bipolar cells that shared a common presynaptic cone. Overall, we show that the human outer retina displays a diverse cohort of Cx36 GJ that follows the general mammalian scheme and display a great functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahnelt P, Kolb H (1994) Horizontal cells and cone photoreceptors in human retina: a Golgi-electron microscopic study of spectral connectivity. J Comp Neurol 343:406–427

    Article  CAS  PubMed  Google Scholar 

  • Ahnelt PK, Kolb H, Pflug R (1987) Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol 255:18–34

    Article  CAS  PubMed  Google Scholar 

  • Ahnelt PK, Keri C, Kolb H (1990) Identification of pedicles of putative blue sensitive cones in human and primate retina. J Comp Neurol 293:39–53

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Völgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506. doi:10.1038/nrn2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bumsted K, Hendrickson A (1999) Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. J Comp Neurol 403:502–516

    Article  CAS  PubMed  Google Scholar 

  • Cruciani V, Mikalsen SO (2006) The vertebrate connexin family. Cell Mol Life Sci 63:1125–1140

    Article  CAS  PubMed  Google Scholar 

  • Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries SH, Li W, Saszik S (2006) Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse. Neuron 50:735–748

    Article  CAS  PubMed  Google Scholar 

  • Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21:230–239

    CAS  PubMed  Google Scholar 

  • Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325–3334

    Article  CAS  PubMed  Google Scholar 

  • Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342–343

    Article  CAS  PubMed  Google Scholar 

  • Greferath U, Grünert U, Wässle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301:433–442

    Article  CAS  PubMed  Google Scholar 

  • Grünert U, Martin PR, Wässle H (1994) Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol 348:607–627

    Article  PubMed  Google Scholar 

  • Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke KS (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425:193–201

    Article  PubMed  Google Scholar 

  • Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  Google Scholar 

  • Han Y, Massey SC (2005) Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc Natl Acad Sci USA 102:13313–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haverkamp S, Grünert U, Wässle H (2000) The cone pedicle, a complex synapse in the retina. Neuron 27:85–95

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Grünert U, Wässle H (2001) The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J Neurosci 21:2488–2500

    CAS  PubMed  Google Scholar 

  • Haverkamp S, Haeseleer F, Hendrickson A (2003) A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neurosci 20:589–600

    Article  Google Scholar 

  • Hendrickson A, Yan YH, Erickson A, Possin D, Pow D (2007) Expression patterns of calretinin, calbindin and parvalbumin and their colocalization in neurons during development of Macaca monkey retina. Exp Eye Res 85:587–601

    Article  CAS  PubMed  Google Scholar 

  • Hidaka S, Akahori Y, Kurosawa Y (2004) Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci 24:10553–10567

    Article  CAS  PubMed  Google Scholar 

  • Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K (2004) Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 19:2633–2640

    Article  PubMed  Google Scholar 

  • Hornstein EP, Verweij J, Schnapf JL (2004) Electrical coupling between red and green cones in primate retina. Nat Neurosci 7:745–750

    Article  CAS  PubMed  Google Scholar 

  • Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and ist application in double immunostaining. J Histochem Cytochem 44:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Kántor O, Temel Y, Holzmann C, Raber K, Nguyen HP, Cao C, Türkoglu HO, Rutten BP, Visser-Vandewalle V, Steinbusch HW et al (2006) Selective striatal neuron loss and alterations in behavior correlate with impaired striatal function in Huntington’s disease transgenic rats. Neurobiol Dis 22:538–547

    Article  PubMed  Google Scholar 

  • Kihara AH, Mantovani de Castro L, Belmonte MA, Yan CY, Moriscot AS, Hamassaki DE (2006) Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. J Neurobiol 66:1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52. doi:10.1016/j.ijdevneu.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Goede P, Roberts S, McDermott R, Gouras P (1997) Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. J Comp Neurol 386:443–460

    Article  CAS  PubMed  Google Scholar 

  • Kovács-Öller T, Raics K, Orbán J, Nyitrai M, Völgyi B (2014) Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 358:289–302. doi:10.1007/s00441-014-1967-9

    Article  PubMed  Google Scholar 

  • Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    Article  PubMed  Google Scholar 

  • Li W, DeVries SH (2004) Separate blue and green cone networks in the mammalian retina. Nat Neurosci 7:751–756

    Article  CAS  PubMed  Google Scholar 

  • Li W, DeVries SH (2006) Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat Neurosci 9:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Jakobs TC, Masland RH (2005) Different functional types of bipolar cells use different gap-junctional proteins. J Neurosci 25:6696–6701

    Article  CAS  PubMed  Google Scholar 

  • Massey SC, Mills SL (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366:15–33

    Article  CAS  PubMed  Google Scholar 

  • Massey SC, O’Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O’Brien J (2003) Multiple neuronal connexins in the mammalian retina. Cell Commun Adhes 10:425–430

    Article  CAS  PubMed  Google Scholar 

  • Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K et al (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    Article  CAS  PubMed  Google Scholar 

  • Milam AH, Dacey DM, Dizhoor AM (1993) Recoverin immunoreactivity in mammalian cone bipolar cells. Visual Neurosci 10:1–10

    Article  CAS  Google Scholar 

  • Mills SL, O’Brien JJ, Li W, O’Brien J, Massey SC (2001) Rod pathways in the mammalian retina use connexin36. J Comp Neurol 436:336–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller LP, Dedek K, Janssen-Bienhold U, Meyer A, Kreuzberg MM, Lorenz S, Willecke K, Weiler R (2010) Expression and modulation of connexin 30.2, a novel gap junction protein in the mouse retina. Vis Neurosci 27:91–101. doi:10.1017/S0952523810000131

    Article  PubMed  Google Scholar 

  • Nathans J, Thomas D, Hogness D (1986) Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232:193–202

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JJ, Chen X, Macleish PR, O’Brien J, Massey SC (2012) Photoreceptor coupling mediated by connexin36 in the primate retina. J Neurosci 32:4675–4687. doi:10.1523/JNEUROSCI.4749-11.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan F, Paul DL, Bloomfield SA, Völgyi B (2010) Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J Comp Neurol 518:911–927. doi:10.1002/cne.22254

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereda A, O’Brien JO, Nagy JI, Bukauskas F, Davidson KGV, Kamasawa N, Yasumura T, Rash JE (2003) Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. J Neurosci 23:7489–7503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrasch-Parwez E, Habbes HW, Weickert S, Löbbecke-Schumacher M, Striedinger K, Wieczorek S, Dermietzel R, Epplen JT (2004) Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington’s disease. J Comp Neurol 479:181–197

    Article  CAS  PubMed  Google Scholar 

  • Rash JE, Kamasawa N, Davidson KGV, Yasumura T, Pereda AE, Nagy JI (2012) Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling. J Membr Biol 245:333–344. doi:10.1007/s00232-012-9454-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA 70:1677–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage D (2008) Watershed segmentation. Ecole Polytechnique Fédérale de Lausanne. http://bigwww.epfl.ch/sage/soft/watershed

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19:1203–1216

    CAS  PubMed  Google Scholar 

  • Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R (2005a) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

    Article  CAS  PubMed  Google Scholar 

  • Schubert T, Maxeiner S, Krüger O, Willecke K, Weiler R (2005b) Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol 490:29–39

    Article  CAS  PubMed  Google Scholar 

  • Sharpe LT, Stockman A (1999) Rod pathways: the importance of seeing nothing. Trends Neurosci 22:497–504

    Article  CAS  PubMed  Google Scholar 

  • Söhl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  • Söhl G, Joussen A, Kociok N, Willecke K (2010) Expression of connexin genes in the human retina. BMC Ophthalmol 10:27. doi:10.1186/1471-2415-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Pollak E, Buzás P, Gábriel R (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763:79–86

    Article  PubMed  Google Scholar 

  • Völgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Abrams J, Paul DL, Bloomfield SA (2005) Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Chheda S, Bloomfield SA (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512:664–687. doi:10.1002/cne.21912

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Kovács-Öller T, Atlasz T, Wilhelm M, Gábriel R (2013a) Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 34:1–18. doi:10.1016/j.preteyeres.2012.12.002

    Article  PubMed  Google Scholar 

  • Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA (2013b) Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS ONE 8:e69426. doi:10.1371/journal.pone.0069426

    Article  PubMed  PubMed Central  Google Scholar 

  • Wässle H, Grünert U, Martin PR, Boycott BB (1994) Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res 34:561–579

    Article  PubMed  Google Scholar 

  • Watanabe A (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol 8:305–318

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Hendrickson A (2000) Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J Comp Neurol 425:545–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Zsuzsanna Vidra for her technical help and are grateful to Dr. Mark Eyre for the assistance with the English language. The authors are thankful for providing the antibodies: Noga Vardi (mGluR6), Wilhelm Koch (recoverin), Alán Alpár (guinea pig calbindin), Norbert Hájos (GluA4N). Supported by OTKA K105247 to B.V. and OTKA 73000 Á.S. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’.to B.V. Finally, B.V. was also supported by the Hungarian Brain Research Program (KTIA_NAP_13-2-2015-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Völgyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (number of permission: TUKEB 58/2006) and with the 1964 Helsinki declaration and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kántor, O., Benkő, Z., Énzsöly, A. et al. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct 221, 2963–2984 (2016). https://doi.org/10.1007/s00429-015-1082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1082-z

Keywords

Navigation