Skip to main content
Log in

Atrophy of pyramidal neurons and increased stress-induced glutamate levels in CA3 following chronic suppression of adult neurogenesis

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Following their birth in the adult hippocampal dentate gyrus, newborn progenitor cells migrate into the granule cell layer where they differentiate, mature, and functionally integrate into existing circuitry. The hypothesis that adult hippocampal neurogenesis is physiologically important has gained traction, but the precise role of newborn neurons in hippocampal function remains unclear. We investigated whether loss of new neurons impacts dendrite morphology and glutamate levels in area CA3 of the hippocampus by utilizing a human GFAP promoter-driven thymidine kinase genetic mouse model to conditionally suppress adult neurogenesis. We found that chronic ablation of new neurons induces remodeling in CA3 pyramidal cells and increases stress-induced release of the neurotransmitter glutamate. The ability of persistent impairment of adult neurogenesis to influence hippocampal dendrite morphology and excitatory amino acid neurotransmission has important implications for elucidating newborn neuron function, and in particular, understanding the role of these cells in stress-related excitoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bogerts B, Lieberman JA, Ashtari M, Bilder RM, Degreef G, Lerner G, Johns C, Masiar S (1993) Hippocampus-amygdala volumes and psychopathology in chronic schizophrenia. Biol Psychiatr 33(4):236–246

    Article  CAS  Google Scholar 

  • Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatr 152(7):973–981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385(3):385–404

    Article  CAS  PubMed  Google Scholar 

  • Burghardt NS, Park EH, Hen R, Fenton AA (2012) Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22(9):1795–1808. doi:10.1002/hipo.22013

    Article  PubMed  Google Scholar 

  • Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK (2006) Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. Neuro Rx: J Am Soc Exp Neuro Ther 3(1):22–41. doi:10.1016/j.nurx.2005.12.009

    Article  CAS  Google Scholar 

  • Convit A, de Leon MJ, Tarshish C, De Santi S, Kluger A, Rusinek H, George AE (1995) Hippocampal volume losses in minimally impaired elderly. Lancet 345(8944):266

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Wang J, Samuels BA, Rainer Q, David I, Gardier AM, Hen R (2010) Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neurosci: Rev J Bringing Neurobiol, Neurol Psychiatr 16(5):578–591. doi:10.1177/1073858409360281

    Google Scholar 

  • DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58(6):884–893. doi:10.1016/j.neuropharm.2009.12.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. doi:10.1038/nrn2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51 (pii: S0896-6273(00)00084-2)

    Article  CAS  PubMed  Google Scholar 

  • Fukuzako H, Fukazako T, Hashiguchi T, Hokazono Y, Takeuchi K, Hirakawa K, Ueyama K, Takigawa M, Kajiya Y, Nakajo M, Fujimoto T (1996) Reduction in hippocampal formation volume is caused mainly by its shortening in chronic schizophrenia: assessment by MRI. Biol Psychiatr 39(11):938–945

    Article  CAS  Google Scholar 

  • Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439(7076):589–593. doi:10.1038/nature04404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566. doi:10.1016/j.neuron.2007.05.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golomb J, Kluger A, de Leon MJ, Ferris SH, Convit A, Mittelman MS, Cohen J, Rusinek H, De Santi S, George AE (1994) Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn Mem 1(1):45–54

    CAS  PubMed  Google Scholar 

  • Gould E, Woolley CS, McEwen BS (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37(2):367–375

    Article  CAS  PubMed  Google Scholar 

  • Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci: Off J Soc Neurosci 17(7):2492–2498

    CAS  Google Scholar 

  • Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatr 40(11):1091–1099. doi:10.1016/S0006-3223(96)00229-6

    Article  CAS  Google Scholar 

  • Hernandez L, Joshi N, Murzi E, Verdeguer P, Mifsud JC, Guzman N (1993a) Colinear laser-induced fluorescence detector for capillary electrophoresis. Analysis of glutamic acid in brain dialysates. J Chromatogr A 652(2):399–405

    Article  CAS  PubMed  Google Scholar 

  • Hernandez L, Tucci S, Guzman N, Paez X (1993b) In vivo monitoring of glutamate in the brain by microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 652(2):393–398

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623. doi:10.1002/cne.902950407

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr (1994) MRI-based hippocampal volume measurements in epilepsy. Epilepsia 35(Suppl 6):S21–S29

    Article  PubMed  Google Scholar 

  • Joels M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10(6):459–466. doi:10.1038/nrn2632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49(5):741–757. doi:10.1111/j.1528-1167.2007.01485.x

    Article  PubMed  Google Scholar 

  • Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15(12):1613–1620. doi:10.1038/nn.3262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lacefield CO, Itskov V, Reardon T, Hen R, Gordon JA (2012) Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus 22(1):106–116. doi:10.1002/hipo.20860

    Article  PubMed Central  PubMed  Google Scholar 

  • Laplagne DA, Esposito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, Gage FH, Schinder AF (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4(12):e409. doi:10.1371/journal.pbio.0040409

    Article  PubMed Central  PubMed  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208. doi:10.1002/cne.903390204

    Article  CAS  PubMed  Google Scholar 

  • Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61(5):1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69(1):89–98 (pii: 030645229500259L)

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Schloesser RJ, Lu Y, Jimenez DV, Paredes D, Greene JS, Greig NH, Manji HK, Lu B (2012) Roles of p75 (NTR), long-term depression, and cholinergic transmission in anxiety and acute stress coping. Biol Psychiatry 71(1):75–83. doi:10.1016/j.biopsych.2011.08.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metab: Clin Exp 54(5 Suppl 1):20–23. doi:10.1016/j.metabol.2005.01.008

    Article  CAS  Google Scholar 

  • McEwen BS, Magarinos AM (1997) Stress effects on morphology and function of the hippocampus. Ann N Y Acad Sci 821:271–284

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Magarinos AM, Reagan LP (2002) Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatr 17(Suppl 3):318–330 (pii: S0924933802006508)

    Article  Google Scholar 

  • Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16(3):233–238. doi:10.1002/hipo.20155

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60(5):1650–1657

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Bolinao ML, Stein-Behrens B, Sapolsky R (1994) Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res 655(1–2):251–254

    Article  CAS  PubMed  Google Scholar 

  • Musazzi L, Racagni G, Popoli M (2011) Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem Int 59(2):138–149. doi:10.1016/j.neuint.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Petrik D, Lagace DC, Eisch AJ (2012) The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 62(1):21–34. doi:10.1016/j.neuropharm.2011.09.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 33(1):88–109. doi:10.1038/sj.npp.1301574

    Article  CAS  Google Scholar 

  • Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatr 149(8):999–1010

    CAS  PubMed  Google Scholar 

  • Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70(4):582–588. doi:10.1016/j.neuron.2011.05.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809. doi:10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935

    Article  CAS  PubMed  Google Scholar 

  • Schloesser RJ, Manji HK, Martinowich K (2009) Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. NeuroReport 20(6):553–557. doi:10.1097/WNR.0b013e3283293e59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. doi:10.1038/mp.2010.34

    PubMed Central  PubMed  Google Scholar 

  • Schloesser RJ, Martinowich K, Manji HK (2012) Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 35(1):36–46. doi:10.1016/j.tins.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429(6988):184–187. doi:10.1038/nature02553

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld TJ, Gould E (2012) Stress, stress hormones, and adult neurogenesis. Exp Neurol 233(1):12–21. doi:10.1016/j.expneurol.2011.01.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93(9):3908–3913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer BH, Gamelli AE, Fuller CL, Temme SJ, Parent JM, Murphy GG (2011) Compensatory network changes in the dentate gyrus restore long-term potentiation following ablation of neurogenesis in young-adult mice. Proc Natl Acad Sci USA 108(13):5437–5442. doi:10.1073/pnas.1015425108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235(4784):73–76

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243(4890):535–538

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461. doi:10.1038/nature10287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatr 32(9):756–765

    Article  CAS  Google Scholar 

  • Stein-Behrens BA, Lin WJ, Sapolsky RM (1994) Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. J Neurochem 63(2):596–602

    CAS  PubMed  Google Scholar 

  • Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907. doi:10.1038/nn.215610.1038/nn.2156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034. doi:10.1038/4151030a

    Article  PubMed  Google Scholar 

  • Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS (1992a) Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2(4):431–435. doi:10.1002/hipo.450020410

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992b) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222(1):157–162

    Article  CAS  PubMed  Google Scholar 

  • Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH (2004) Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatr: J Ment Sci 184:496–502

    Article  Google Scholar 

  • Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci USA 87(15):5832–5836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institute of Mental Health Intramural Research Program and the Lieber Institute for Brain Development. RJS and KM were supported in part by NARSAD Young Investigator Awards.

Conflict of interest

The authors declare that they have no conflict of interest. HKM is a paid employee of Janssen Research & Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keri Martinowich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schloesser, R.J., Jimenez, D.V., Hardy, N.F. et al. Atrophy of pyramidal neurons and increased stress-induced glutamate levels in CA3 following chronic suppression of adult neurogenesis. Brain Struct Funct 219, 1139–1148 (2014). https://doi.org/10.1007/s00429-013-0532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0532-8

Keywords

Navigation