Skip to main content
Log in

The role of temporo-parietal junction (TPJ) in global Gestalt perception

Brain Structure and Function Aims and scope Submit manuscript

Abstract

Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alivisatos B, Wilding J (1982) Hemispheric specialization in matching Stroop-type letter stimuli. Cortex 18:5–21

    PubMed  CAS  Google Scholar 

  • Altmann CF, Bülthoff HH, Kourtzi Z (2003) Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13:342–349

    Article  PubMed  CAS  Google Scholar 

  • Assmus A, Marshall JC, Noth J, Zilles K, Fink GR (2005) Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience 132:923–927

    Article  PubMed  CAS  Google Scholar 

  • Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschrift für Psychiatrie und Neurologie 25:51–81

    Article  Google Scholar 

  • Buckner RL, Goodman J, Burck M, Roote M, Koutstall W, Schacter D, Rosen B, Dale AM (1998) Functional-anatomic correlates of object priming in humans revealed by rapid presentation event related fMRI. Neuron 20:285–296

    Article  PubMed  CAS  Google Scholar 

  • Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9:3735–3739

    Article  PubMed  CAS  Google Scholar 

  • Chechlacz M, Rotshtein P, Hansen PC, Riddoch JM, Deb S, Humphreys GW (2011) The neural underpinings of simultanagnosia: disconnecting the visuospatial attention network. J Cogn Neurosci [Epub ahead of print]

  • Cornette L, Dupont P, Salmon E, Orban GA (2004) The neural substrate of orientation working memory. J Cogn Neurosci 13:813–828

    Article  Google Scholar 

  • Costen NP, Parker DM, Craw I (1994) Spatial content and spatial quantisation effects in face recognition. Perception 23:129–146

    Article  PubMed  CAS  Google Scholar 

  • Costen NP, Parker DM, Craw I (1996) Effects of high-pass and low-pass spatial filtering on face identification. Percept Psychophys 58:602–612

    Article  PubMed  CAS  Google Scholar 

  • Dakin SC, Bex PJ (2001) Local and global visual grouping: tuning for spatial frequency and contrast. J Vis 1:99–111

    Article  PubMed  CAS  Google Scholar 

  • Danckert J, Maruff P, Ymer C, Kinsella G, Yucel M, de Graaff S, Currie J (2000) Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology 14:16–28

    Article  PubMed  CAS  Google Scholar 

  • Delis DC, Robertson LC, Efron R (1986) Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24:205–214

    Article  PubMed  CAS  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci USA 93:13494–13499

    Article  PubMed  CAS  Google Scholar 

  • Ferber S, Humphreys GK, Vilis T (2003) The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cereb Cortex 13:716–721

    Article  PubMed  Google Scholar 

  • Fink GR, Halligan PW, Marshall JC, Frith CD, Frackowiak RS, Doaln RJ (1997) Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain 120:1779–1791

    Article  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Halligan PW, Dolan RJ (1999) Hemispheric asymmetries in global/local processing are modulated by perceptual salience. Neuropsychologia 37:31–40

    Article  PubMed  CAS  Google Scholar 

  • Freeman E, Driver J, Sagi D, Zhaoping L (2003) Top-down modulation of lateral interactions in early vision: does attention affect integration of the whole or just perception of the parts? Curr Biol 27:985–989

    Google Scholar 

  • Friedman-Hill SR, Robertson LC, Treisman A (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–855

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Turner R, Frackowiak RS (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2:45–53

    Article  PubMed  CAS  Google Scholar 

  • Gerlach C, Law I, Gade A, Paulson OB (1999) Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122:2159–2170

    Article  PubMed  Google Scholar 

  • Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc Natl Acad Sci USA 93:615–622

    Article  PubMed  CAS  Google Scholar 

  • Gould RL, Brown RG, Owen AM, ffytche DH, Howard RJ (2003) fMRI BOLD response to increasing task difficulty during successful paired associates learning. Neuroimage 20:1006–1019

    Article  PubMed  CAS  Google Scholar 

  • Green MF, Glahn D, Engel SA, Nuechterlein KH, Sabb S, Stojwas M, Cohen MS (2005) Regional brain activity associated with visual backward masking. J Cogn Neurosci 17:13–23

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107:293–321

    Article  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vis Res 41:1409–1422

    Article  PubMed  CAS  Google Scholar 

  • Heinze HJ, Hinrichs H, Scholz M, Burchert W, Mangun GR (1998) Neural mechanisms of global and local processing. A combined PE and ERP study. J Cogn Neurosci 10:485–498

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach M, Erb M, Klockgether T, Moskau S, Karnath H-O (2009) fMRI of global visual perception in simultanagnosia. Neuropsychologia 47:1173–1177

    Article  PubMed  Google Scholar 

  • Huberle E, Karnath H-O (2006) Global shape recognition is modulated by the spatial distance of local elements—evidence from simultanagnosia. Neuropsychologia 44:905–911

    Article  PubMed  Google Scholar 

  • Huberle E, Karnath H-O (2010) Saliency modulates global perception in simultanagnosia. Exp Brain Res 204:595–603

    Article  PubMed  Google Scholar 

  • Hughes HC, Fendrich R, Reuter-Lorenz PA (1990) Global versus local processing in the absence of low spatial frequencies. J Cogn Neurosci 2:272–282

    Article  Google Scholar 

  • Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119

    Article  PubMed  Google Scholar 

  • Ito M, Fujita I, Tamura H, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:218–226

    PubMed  CAS  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–856

    Article  PubMed  CAS  Google Scholar 

  • Karnath H-O, Zihl J (2003) Disorders of spatial orientation. In: Brandt T, Caplan LR, Dichgans J, Diener HC, Kennard C (Hrsg.) Neurological Disorders: Course and Treatment, 2nd edn. Academic Press, San Diego, pp 277–286

  • Karnath H-O, Ferber S, Rorden C, Driver J (2000) The fate of global information in dorsal simultanagnosia. Neurocase 6:295–306

    Article  Google Scholar 

  • Kimchi P, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535

    Article  PubMed  CAS  Google Scholar 

  • Koffka K (1935) Principles of Gestalt Psychology. Harcourt, New York

    Google Scholar 

  • Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37:333–346

    Article  PubMed  CAS  Google Scholar 

  • Kovacs I, Julesz B (1993) A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Natl Acad Sci USA 90:7495–7497

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Jacobsen A (1991) Perceptual organization and focused attention: the role of objects and proximity in visual processing. Percept Psychol 50:267–284

    Article  CAS  Google Scholar 

  • Lamb MR, Robertson LC (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Percept Psychophys 44:172–181

    Article  PubMed  CAS  Google Scholar 

  • Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11:287–297

    Article  PubMed  CAS  Google Scholar 

  • Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuopsychologia 45:321–331

    Article  Google Scholar 

  • Luria AR (1959) Disorders of “simultaneous perception” in a case of bilateral occipitoparietal brain injury. Brain 82:437–449

    Article  PubMed  CAS  Google Scholar 

  • Lux S, Marshall JC, Ritzl A, Weiss PH, Pietrzyk U, Shah NJ, Zilles K, Fink GR (2004) A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Neuroscience 124:113–120

    Article  PubMed  CAS  Google Scholar 

  • Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139

    Article  PubMed  CAS  Google Scholar 

  • Martin M (1979) Hemispheric specialization for local nd global processing. Neuropsychologia 17:33–40

    Article  PubMed  CAS  Google Scholar 

  • Mozer MC (1991) The perception of multiple objects. MIT Press, Cambridge

    Google Scholar 

  • Mozer MC, Sitton M (1998) Computational modeling of spatial attention. Psychology Press, Erlbaum

    Google Scholar 

  • Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Sawamoto N, Toma K, Nakamura K, Hanakawa T, Konishi J, Fukuyama H, Shibasaki H (1999) Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. Neuroimage 10:193–199

    Article  PubMed  CAS  Google Scholar 

  • Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cogn Psychol 9:353–383

    Article  Google Scholar 

  • Nishijo H, Yamamoto Y, Ono T, Uwano T, Yamashita J, Yamashima T (1997) Single neuron responses in the monkey anterior cingulate cortex during visual discrimination. Neurosci Lett 227:79–82

    Article  PubMed  CAS  Google Scholar 

  • Pathel GA, Sathian k (2000) Visual search: bottom-up or top-down? Front Biosci 5:169–193

    Google Scholar 

  • Pouget P, Emeric FE, Suphorn V, Reis K, Schall JD (2005) Chronometry of visual response in frontal eye field, supplementary field, and anterior cingulate cortex. J Neurophysiol 94:2086–2092

    Article  PubMed  Google Scholar 

  • Rafal RD (1997) Balint syndrome. In: Feinberg TE, Farah MJ (eds.) Behavioral Neurology and Neuropsychology. McGraw-Hill, New York, pp 337–356

  • Rao H, Zhou T, Zhuo Y, Fan S, Chen L (2003) Spatiotemporal activation of the two visual pathways in form discrimination and spatial location: a brain mapping study. Hum Brain Mapp 18:79–89

    Article  PubMed  Google Scholar 

  • Rees G, Frackowiak R, Frith C (1997) Two modulatory effects of attention that mediate object categorization in human cortex. Science 275:835–838

    Article  PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999a) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999b) Are cortical models really bound by the “binding problem”? Neuron 24(87–93):111–125

    Google Scholar 

  • Rizzo M, Hurtig R (1987) Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology 37:1642–1648

    Article  PubMed  CAS  Google Scholar 

  • Robertson LC, Lamb MR, Knight RT (1988) Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J Neurosci 8:3757–3769

    PubMed  CAS  Google Scholar 

  • Robertson LC, Egly R, Lamb MR, Kerth L (1993) Spatial attention and cueing to global and local levels of hierarchical structure. J Exp Hum Psychol Percept Perform 19:471–487

    Article  CAS  Google Scholar 

  • Roelfsema PR (1998) Solutions for the binding problem. Z Naturforsch 53:691–715

    CAS  Google Scholar 

  • Ruby P, Sirigu A, Decety J (2002) Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339

    Article  PubMed  Google Scholar 

  • Schacter DL, Buckner RL (1998) Priming and the brain. Neuron 20:185–195

    Article  PubMed  CAS  Google Scholar 

  • Shafritz KM, Gore J, Marois R (2002) The role of the parietal cortex in visual feature binding. Proc Natl Acad Sci USA 99:10917–10922

    Article  PubMed  CAS  Google Scholar 

  • Singer W (2001) Consciousness and the binding problem. Ann N Y Acad Sci 9:123–146

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88:129–133

    Article  PubMed  CAS  Google Scholar 

  • Sunaert S, Van Hecke P, Marchal G, Orban GA (2000) Attention to speed of motion, speed discrimination, and task difficulty: an fMRI study. Neuroimage 11:612–623

    Article  PubMed  CAS  Google Scholar 

  • Tang-Wai DF, Graff-Radford NR, Boeve BF, Dickson DW, Parisi JE, Crook R, Caselli RJ, Knopman DS, Petersen RC (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174

    Article  PubMed  CAS  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Uttal WR, Baruch T, Allen L (1995) The effects of combinations of image degradations in a discrimination task. Percept Psychophys 57:668–681

    Article  PubMed  CAS  Google Scholar 

  • Valenza N, Murray MM, Ptak R, Viulleumier P (2004) The space of senses: impaired crossmodal interactions in a patient with Balint syndrome after bilateral parietal damage. Neuropsychologia 42:1737–1748

    Article  PubMed  Google Scholar 

  • von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526

    Article  PubMed  Google Scholar 

  • von der Malsburg C, Willshaw DJ (1981) Cooperativity and brain organization. Trends Neurosci 4:80–83

    Article  Google Scholar 

  • Weissman DH, Woldorff MG (2005) Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci. Cereb Cortex 15:870–876

    Google Scholar 

  • Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt. II. Psychologische Forschung 4:301–350

    Article  Google Scholar 

  • Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8:227–233

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DT, Halligan PW, Marshall JC, Buchel C, Dolan RJ (2001) Switching between the forest and the trees: brain systems involved in local/global changed level judgements. Neuroimage 13:56–67

    Article  PubMed  CAS  Google Scholar 

  • Wolpert I (1924) Die Simultanagnosie - Störung der Gesamtauffassung. Zeitschrift für die Gesamte Neurologie und Psychiatrie 93:397–415

    Article  Google Scholar 

  • Yamaguchi S, Yamagata S, Kobayashi S (2000) Cerebral asymmetry of the ‘top down’ allocation of attention to global and local features. J Neurosci 20:1–5

    Google Scholar 

  • Zurowski G, Gostomzyk J, Gron G, Weller R, Schirrmeister H, Neumeier B, Spitzer M, Reske SN, Walter H (2002) Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. Neuroimage 15:45–57

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. W. Grodd and the staff of the Section Experimental Research of the CNS located at the University of Tübingen for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Huberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huberle, E., Karnath, HO. The role of temporo-parietal junction (TPJ) in global Gestalt perception. Brain Struct Funct 217, 735–746 (2012). https://doi.org/10.1007/s00429-011-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0369-y

Keywords

Navigation