Skip to main content
Log in

Early development of the pituitary gland in Acipenser naccarii (Chondrostei, Acipenseriformes): an immunocytochemical study

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The distribution and appearance of secretory cells in the pituitary gland were investigated for the first time in a chondrostean species, Acipenser naccarii, from embryos to juveniles, by immunohistochemistry with mammalian and teleost hormone antisera. On 5.5 day post-fertilization (2.5 days pre-hatching), the pituitary of embryos appears as an oval cell mass with a narrow central cavity (hypophysial cleft), close to the ventral border of diencephalon under the third ventricle. At that time no neurohypophysis is observed, the adenohypophysis is not yet structurally divided into pars intermedia (PI) and pars distalis (PD) and only immunoreactive growth hormone cells are detectable. Seven days post-fertilization (1 day pre-hatching) the immunoreactive thyrotropic cells appear in the ventral region and the immunoreactive adrenocorticotropic cells in the posterior dorsal one. At hatching, some immunoreactive melanotropic (ir-MSH) cells are visible in the posterior dorsal region and some immunoreactive prolactin cells in the anterior one. Eight days later the immunoreactive somatolactin cells appear along the posterior dorsal border and the immunoreactive gonadotropic I (ir-GtH I) cells in the ventral region. Here, a few ir-GtH II cells finally appear in 76–86 day old juveniles. The gland elongates after hatching and in 8-day-old larvae two adenohypophysial regions are identified: a posterior (the presumptive PI) and an anterior one (the presumptive PD). In 156–166-day-old juveniles three regions (rostral and proximal pars distalis and pars intermedia) appear and a high number of ir-MSH cells are visible in the rostral region. The first protrusion of neurohypophysis into adenohypophysis is observed in 76–86-day-old juveniles and increases with age, branching into PI. The rostro-caudal distribution of the immunoreactive cells follows the spatial expression of the corresponding hormone gene families observed in zebra fish, suggesting similar differentiating mechanisms in teleosts and chondrosteans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b Fig. 2a–c Fig. 3a–c
Fig. 4a–h
Fig. 5a–e Fig. 6a–d

Similar content being viewed by others

References

  • Amemiya Y, Sogabe Y, Nozaki M, Takahashi A, Kawauchi H (1999) Somatolactin in the white sturgeon and African lungfish and its evolutionary significance. Gen Comp Endocrinol 114:181–190

    Article  CAS  PubMed  Google Scholar 

  • Ball JN, Baker BI (1969) The pituitary gland: anatomy and histophysiology. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol II. Academic Press, New York, pp 1–110

  • Barannikova IA (1949) Localization of the gonadotrophic function in the hypophysis of sevriuga (Acipenser stellatus). Dokl Akad Nauk SSSR 69:117–120

    Google Scholar 

  • Barannikova IA (1950) On the difference in the function of the basophilic cells of the hypophysis of the Kura osetr (Acipenser güldenstaedti persicus Borodin) of different biological groups. Dokl Akad Nauk SSSR 74:1033–1036

    Google Scholar 

  • Batten TFC (1986) Immunocytochemical demonstration of pituitary cell types in the teleost Poecilia latipinna, by light and electron microscopy. Gen Comp Endocrinol 63:139–154

    CAS  PubMed  Google Scholar 

  • Brown CL, Bern HA (1989) Thyroid hormones in early development, with special reference to teleost fish. In: Schreibman MP, Scanes CG (eds) Hormones in Development, Maturation and Senescence of Neuroendocrine Systems. A Comparative Approach. Academic Press, New York, pp 289–306

  • Cambré ML, Verdonck W, Ollevier F, Vandesande F, Batten TFC, Kühn ER (1986) Immunocytochemical identification and localization of the different cell types in the pituitary of the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 61:368–375

    PubMed  Google Scholar 

  • Cambré M, Mareels G, Corneillie S, Moons L, Ollevier F, Vandesande F (1990) Chronological appearance of the different hypophysial hormones in the pituitary of sea bass larvae (Dicentrarchus labrax) during their early development: an immunocytochemical demonstration. Gen Comp Endocrinol 77:408–415

    PubMed  Google Scholar 

  • Chen TT, Marsh A, Shamblott M, Chan K-M, Tang Y-L, Cheng CM, Yang B-Y (1994) Structure and evolution of fish growth hormone and insulin-like growth factor genes. In: Sherwood NM, Hew CL (eds) Fish Physiology, vol VI. Academic Press, New York, pp 179–209

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental biology and aquaculture. Springer, Berlin Heidelberg New York

  • Dores RM, Stevenson TC, Joss JMP (1988) The isolation of multiple forms of β-endorphin from the intermediate pituitary of the Australian lungfish, Neoceratodus forsteri. Peptides 9:801–808

    Article  CAS  PubMed  Google Scholar 

  • Dores RM, Meza JC, Schenk LM, Carr JA, Norris DO (1989) Detection of adrenocorticotropin-related and α-melanocytes-stimulating hormone-related substances in the anterior pituitary of larval and adult Ambystoma tigrinum (Class: Amphibia). Endocrinology 124:1007–1016

    CAS  PubMed  Google Scholar 

  • Follenius E, Dubois MP (1980) Localization of anti-ACTH, anti-MSH, and anti-α-endorphin reactive sites in the fish pituitary. In: Jutisz M, Mckerns KW (eds) Synthesis and release of adenohypophyseal hormones. Plenum, pp 197–208

  • García-Hernández MP, García-Ayala A, Elbal MT, Agulleiro B (1996) The adenohypophysis of Mediterranean yellowtail, Seriola dumerilii (Risso, 1810): an immunocytochemical study. Tissue Cell 28:577–585

    PubMed  Google Scholar 

  • Grandi G, Colombo G, Chicca M (2003) Immunocytochemical studies on the pituitary gland of Anguilla anguilla L., in relation to early growth stages and diet-induced sex differentiation. Gen Comp Endocrinol 131:66–76

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH (1971) On the structure and vascularization of the pituitary gland in some primitive actinopterygians (Acipenser, Polyodon, Calamoichthys, Polypterus, Lepisosteus and Amia). Biol Skr 18:1–64

    Google Scholar 

  • Hansen GN, Hansen BL (1975) Immunohistochemical localization of growth hormone and prolactin in the pituitary gland of Acipenser güldenstaedti Brandt (Chondrostei). Acta Zool 56:29–41

    CAS  Google Scholar 

  • Henderson IW (1997) Endocrinology of the vertebrate. In: Dantzler WH (ed) Handbook of Physiology, vol I. Oxford University Press, New York, pp 623–749

  • Herzog W, Zeng X, Lele Z, Sonntag C, Ting JW, Chang CY, Hammerschmidt M (2003) Adenohypophysis formation in the zebrafish and its dependence on Sonic hedgehog. Dev Biol 254:36–49

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Kurokura H, Kasahara S (1989) Effects of thyroxine and thiourea on the development of larval red sea bream Pagrus major. Nippon Suisan Gakkaishi 55:1189–1195

    Google Scholar 

  • Hwang PP, Sun CM (1989) Putative role of adenohypophysis in the osmoregulation of tilapia larvae (Oreochromis mossambicus:Teleostei): an ultrastructural study. Gen Comp Endocrinol 73:335–341

    CAS  PubMed  Google Scholar 

  • Joss JMP, Dores RM, Crim JW, Beshaw M (1990A) Immunocytochemical location of pituitary cells containing ACTH, α-MSH, and β-endorphin in Acipenser transmontanus, Lepisosteus spatula, and Amia calva. Gen Comp Endocrinol 78:459–468

    CAS  PubMed  Google Scholar 

  • Joss JMP, Beshaw M, Williamson S, Trimble J, Dores RM (1990B) The adenohypophysis of the Australian lunghfish, Neoceratodus forsteri- an immunocytological study. Gen Comp Endocrinol 80:274–287

    CAS  PubMed  Google Scholar 

  • Kaneko T (1996) Cell biology of somatolactin. Int Rev Cytol 169:1–24

    CAS  PubMed  Google Scholar 

  • Kawauchi H, Suzuki K, Itoh H, Swanson P, Naito N, Nagahama Y, Nozaki M (1989) The duality of teleost gonadotropins. Fish Physiol Biochem 7:29–38

    CAS  Google Scholar 

  • Kerr T (1949) The pituitaries of Amia, Lepidosteus and Acipenser. Proc Zool Soc Lond 118:973–983

    Google Scholar 

  • Laiz-Carrión R, Segura-Noguera MM, Martin del Río MP, Mancera JM (2003) Ontogeny of adenohypophyseal cells in the pituitary of the American shad (Alosa sapidissima). Gen Comp Endocrinol 132:454–464

    Article  PubMed  Google Scholar 

  • Magliulo-Cepriano L, Schreibman M P, Blüm V (1994) Distribution of variant forms of immunoreactive gonadotropin-releasing hormone and β-gonadotropins I and II in the platyfish, Xiphophorus maculatus, from birth to sexual maturity. Gen Comp Endocrinol 94:135–150

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Elsholtz HP (1994) Comparative aspects of pituitary development and Pit-1 function. In: Farrel AP, Randall DJ, Sherwood NM, Hew CL (eds) Fish Physiology, vol XIII. Academic Press, San Diego, pp 309–330

  • Mal AO, Swanson P, Dickhoff WW (1989) Immunocytochemistry of the developing salmon pituitary gland. Amer Zool 29:94A

    Google Scholar 

  • Mancera JM, Fernández-Llebrez P, Grondona JM, Pérez-Figares JM (1993) Influence of environmental salinity on prolactin and corticotropic cells in the gilthead seabream, Sparus aurata. Gen Comp Endocrinol 90:220–231

    Article  CAS  PubMed  Google Scholar 

  • Manzon LA (2002) The role of prolactin in fish osmoregulation. A review. Gen Comp Endocrinol 125:291–310

    Article  CAS  PubMed  Google Scholar 

  • McLean E, Donaldson EM (1993) The role of growth hormone in growth of poikilotherms. In: Schreibman MP, Scanes CG, Pang PKT (eds) The Endocrinology of Growth, Development and Metabolism in Vertebrates. Academic Press, New York, pp 43–71

  • Miranda LA, Strüssmann CA, Somoza GM (2001) Immunocytochemical identification of GtH 1 and GtH 2 cells during the temperature-sensitive period for sex determination in pejerrey, Odontesthes bonariensis. Gen Comp Endocrinol 124:45–52

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Inui Y (1987) Histological changes in the pituitary-thyroid axis during spontaneous and artificial induced metamorphosis of larvae of the flounder Paralichthys olivaceus. Cell Tissue Res 249:117–123

    CAS  Google Scholar 

  • Naito N, De Jesus EG, Nakai Y, Hirano T (1993) Ontogeny of pituitary cell-types and the hypothalamo-hypophysial relationship during early development of chum salmon, Oncorhynchus keta. Cell Tissue Res 272:429–437

    Google Scholar 

  • Nozaki M, Naito N, Swanson P, Dickhoff W, Nakai Y, Suzuki K, Kawauchi H (1990) Salmonid pituitary gonadotrops. II. Ontogeny of GTH I and GTH II cells in the rainbow trout (Salmo gairdneri irideus). Gen Comp Endocrinol 77:358–367

    CAS  PubMed  Google Scholar 

  • Ono M, Takayama Y, Rand-Weaver M, Sakata S, Yasunaga T, Noso T, Kawauchi H (1990) cDNA cloning of somatolactin, new pituitary protein related to growth hormone and prolactin. Proc Natl Acad Sci USA 87:4330–4334

    CAS  PubMed  Google Scholar 

  • Pandolfi M, Paz AA, Maggese C, Ravaglia M, Vissio P (2001) Ontogeny of immunoreactive somatolactin, prolactin and growth hormone secretory cells in the developing pituitary gland of Cichlasoma dimerus (Teleostei, Perciformes). Anat Embryol 203:461–468

    Article  CAS  PubMed  Google Scholar 

  • Parhar IS, Iwato M, Plaff DW, Schwanzel-Fukuda M (1995) Embryonic development of gonadotropin-releasing hormone neurones in the sockeye salmon. J Comp Neurol 270:256–362

    Google Scholar 

  • Pelissero C, Nunez-Rodriguez J, Le Menn F, Kah O (1988) Immunohistochemical investigation of the pituitary of the sturgeon (Acipenser baeri, Chondrostei). Fish Phisiol Biochem 5:109–119

    Google Scholar 

  • Pierce JG, Parson TF (1981) Glycoprotein hormones: structure and function. Annu Rev Biochem 50:465–495

    Article  CAS  PubMed  Google Scholar 

  • Querat B, Sellouk A, Salmon C (2000) Phylogenetic analysis of the vertebrate glycoprotein hormone family including new sequences of sturgeon (Acipenser baeri) β-subunits of the two gonadotropins and the thyroid-stimulating hormone. Biol Reprod 63:222–228

    CAS  PubMed  Google Scholar 

  • Rand-Weaver M, Kawauchi H (1993) Growth hormone, prolactin and somatolactin: a structural overview. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 2. Elsevier, Amsterdam, pp 39–56

  • Ruijter JM, Creuwels LA (1988) The ultrastructure of prolactin cells in the annual cyprinodont Cynolebias whitei during its life cycle. A morphometric study in freshwater- and saltwater-reared fish. Cell Tissue Res 253:477–483

    CAS  PubMed  Google Scholar 

  • Saga T, Oota Y, Nozaki M, Swanson P (1993) Salmonid pituitary gonadotrophs. III Chronological appearance of GtHI and other adenohypophysial hormones in the pituitary of the developing rainbow trout (Oncorhynchus mykiss irideus). Gen Comp Endocrinol 92:233–241

    Article  CAS  PubMed  Google Scholar 

  • Saga T, Yamaki K, Doi Y, Yoshizuka M (1999) Chronological study of the appearance of adenohypophysial cells in the ayu (Plecoglossus altivelis). Anat Embryol 200:469–475

    Article  CAS  PubMed  Google Scholar 

  • Stouthart AJHX, Lucassen ECHET, van Strien FJC, Balm PHM, Lock RC, Wendelaar Bonga SE (1988) Stress responsiveness of the pituitary-interrenal axis during early life stage of common carp (Cyprinus carpio). J Endocrinol 157:127–137

    Google Scholar 

  • Tanaka M, Tanangonan B J, Tagawa M, de Jesus E G, Nishida H, Isaka M, Kimura R, Hirano T (1995) Development of the pituitary, thyroid and interrenal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture 135:111–126

    Article  Google Scholar 

  • Villaplana M, García-Ayala A, García-Hernández MP, Agulleiro B (1996) Early organization of the pituitary gland in Sparus aurata L. (Teleostei). An ultrastructural study. Anat Embryol 193:441–452

    CAS  PubMed  Google Scholar 

  • Villaplana M, García-Ayala A, García-Hernández M P, Agulleiro B (1997) Ontogeny of the immureactive somatolactin cells in the pituitary of gilthead sea bream (Sparus aurata L., Teleostei). Anat Embryol 196:227–234

    Article  CAS  PubMed  Google Scholar 

  • Villaplana M, García-Ayala A, Chaves Pozo E, Agulleiro B (2000) Identification of mammosomatotropes, growth hormone cells, and prolactin cells in the pituitary gland of gilthead sea bream (Sparus aurata L., Teleostei) using light immunocytochemical methods: an ontogenetic study. Anat Embryol 202:421–429

    Article  CAS  PubMed  Google Scholar 

  • Villaplana M, García-Ayala A, Agulleiro B (2002) Immunocytochemical demonstration of melanotropic and adrenocorticotropic cells from the gilthead sea bream (Sparus aurata L., Teleostei) by light and electron microscopy: an ontogenetic study. Gen Comp Endocrinol 125:410–425

    Article  CAS  PubMed  Google Scholar 

  • Vissio PG, Somoza G M, Maggese MC, Paz DA, Strüssmann CA (1997) Structure and cell type distribution in the pituitary gland of pejerrey Odontesthes bonariensis. Fish Sci 63:64–68

    CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  Google Scholar 

  • Wingstrand KG (1966) Comparative anatomy and evolution of the hypophysis. In: Harris GW and Donovan BT (eds) The pituitary gland, vol 1. Butterworth, London pp 58–126

  • Zhu Y, Thomas P (1995) Red drum somatolactin: development of a homologous radioimmunoassay and plasma levels after exposure to stressors or various backgrounds. Gen Comp Endocrinol 99:275–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to all authors listed in the materials and methods section, who generously contributed the antisera. We also thank Professor G. Colombo for critically reviewing the manuscript; Mr G. Giovannini and Mr S. Giovannini of VIP Acquaculture Farm (Orzinuovi, Brescia, Italy) for generously providing the fishes and caring for them in their plant; Miss E. Tagliati for help in immunocytochemical sample preparation. This investigation was supported by the Italian Ministry of University and Research (MIUR), Grant No. 2002-05-1892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandi, G., Chicca, M. Early development of the pituitary gland in Acipenser naccarii (Chondrostei, Acipenseriformes): an immunocytochemical study. Anat Embryol 208, 311–321 (2004). https://doi.org/10.1007/s00429-004-0402-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0402-5

Keywords

Navigation