Skip to main content

Advertisement

Log in

STAT expression and TFH1 cells in CVID granulomatosis and sarcoidosis: immunological and histopathological comparisons

  • ORIGINAL ARTICLE
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Granulomatous disease is a serious complication of common variable immunodeficiency (CVID-GD) that occurs in 8–22% of these patients and can mimic sarcoidosis, with which it shares certain clinical, biological, and radiological features. However, few studies to date have compared the two pathologies immunologically and histologically. Therefore, we analyzed the immunological-histological findings for different tissue samples from ten patients with CVID-GD and compared them to those of biopsy-proven sarcoidosis. Specifically, we wanted to know whether or not the signaling abnormalities observed in sarcoidosis granulomas are also present in CVID-GD. Morphological differences were found between CVID-GD histology and classical sarcoidosis: mainly, the former’s notable lymphoid hyperplasia associated with granulomas not observed in the latter. All CVID-GD involved organs contained several follicular helper-T (TFH) cells within the granulomatosis, while those cells were inconstantly and more weakly expressed in sarcoidosis. Moreover, CVID and sarcoidosis granulomas expressed the phosphorylated-signal transducer and activator of transcription (pSTAT)1 and pSTAT3 factors, regardless of the organ studied and without any significant difference between entities. Our results suggest that the macrophage-activation mechanism in CVID resembles that of sarcoidosis, thereby suggesting that Janus kinase (JAK)-STAT–pathway blockade might be useful in currently difficult-to-treat CVID-GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Picard C, Al-Herz W, Bousfiha A et al (2015) Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol 35:696–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kobrynski L, Powell RW, Bowen S (2014) Prevalence and morbidity of primary immunodeficiency diseases, United States 2001–2007. J Clin Immunol 34:954–961

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chapel H, Lucas M, Lee M et al (2008) Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood 112:277–286

    Article  CAS  PubMed  Google Scholar 

  4. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C (2012) Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 119:1650–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ho HE, Cunningham-Rundles C (2020) Non-infectious complications of common variable immunodeficiency: updated clinical spectrum, sequelae, and insights to pathogenesis. Front Immunol 11:149. https://doi.org/10.3389/fimmu.2020.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouvry D, Mouthon L, Brillet P-Y et al (2013) Granulomatosis-associated common variable immunodeficiency disorder: a case-control study versus sarcoidosis. Eur Respir J 41:115–122

    Article  PubMed  Google Scholar 

  7. Fasano MB, Sullivan KE, Sarpong SB et al (1996) Sarcoidosis and common variable immunodeficiency. Report of 8 cases and review of the literature. Medicine (Baltimore) 75:251–261

    Article  CAS  PubMed  Google Scholar 

  8. Verbsky JW, Routes JM (2014) Sarcoidosis and common variable immunodeficiency: similarities and differences. Semin Respir Crit Care Med 35:330–335

    Article  PubMed  Google Scholar 

  9. Mannina A, Chung JH, Swigris JJ et al (2016) Clinical predictors of a diagnosis of common variable immunodeficiency-related granulomatous-lymphocytic interstitial lung disease. Ann Am Thorac Soc 13:1042–1049

    Article  PubMed  Google Scholar 

  10. Mechanic LJ, Dikman S, Cunningham-Rundles C (1997) Granulomatous disease in common variable immunodeficiency. Ann Intern Med 127:613–617

    Article  CAS  PubMed  Google Scholar 

  11. Morimoto Y, Routes JM (2005) Granulomatous disease in common variable immunodeficiency. Curr Allergy Asthma Rep 5:370–375

    Article  CAS  PubMed  Google Scholar 

  12. Ardeniz Ö, Cunningham-Rundles C (2009) Granulomatous disease in common variable immunodeficiency. Clin Immunol 133:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boursiquot JN, Gérard L, Malphettes M et al (2013) Granulomatous disease in CVID: retrospective analysis of clinical characteristics and treatment efficacy in a cohort of 59 patients. J Clin Immunol 33:84–95

    Article  CAS  PubMed  Google Scholar 

  14. Furudoï A, Gros A, Stanislas S et al (2016) Spleen histologic appearance in common variable immunodeficiency: analysis of 17 cases. Am J Surg Pathol 40:958–967

    Article  PubMed  Google Scholar 

  15. Oksenhendler E, Gerard L, Fieschi C et al (2008) Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis 46:1547–1554

    Article  PubMed  Google Scholar 

  16. Seidel MG, Kindle G, Gathmann B et al (2019) The European Society for Immunodeficiencies (ESID) Registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract 7:1763–1770

    Article  PubMed  Google Scholar 

  17. Joint statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOGD) adopted by the ATS Board of Directors and by the ERS Executive Committee (1999) Statement on sarcoidosis. Am J Respir Crit Care Med 160:736–755

    Article  Google Scholar 

  18. Wehr C, Kivioja T, Schmitt C et al (2008) The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 111:77–85

    Article  CAS  PubMed  Google Scholar 

  19. Turpin D, Furudoï A, Parrens M, Blanco P, Viallard JF, Duluc D (2018) Increase of follicular helper T cells skewed toward a Th1 profile in CVID patients with non-infectious clinical complications. Clin Immunol 197:130–138

    Article  CAS  PubMed  Google Scholar 

  20. Arnold DF, Arnold DF, Wiggins J, Cunningham-Rundles C, Misbah SA, Chapel HM (2008) Granulomatous disease: distinguishing primary antibody disease from sarcoidosis. Clin Immunol 128:18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kollert F, Venhoff N, Goldacker S et al (2014) Bronchoalveolar lavage cytology resembles sarcoidosis in a subgroup of granulomatous CVID. Eur Respir J 43:922–924

    Article  PubMed  Google Scholar 

  22. Viallard JF, Blanco P, André M et al (2006) CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation. Clin Immunol 119:51–58

    Article  CAS  PubMed  Google Scholar 

  23. Giovannetti A, Pierdominici M, Mazzetta F et al (2007) Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J Immunol 178:3932–3943

    Article  CAS  PubMed  Google Scholar 

  24. Bateman EA, Ayers L, Sadler R et al (2012) T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin Exp Immunol 170:202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Viallard JF, Ruiz C, Guillet M, Pellegrin JL, Moreau JF (2013) Perturbations of the CD8(+) T-cell repertoire in CVID patients with complications. Results Immunol 3:122–128

    Article  PubMed  PubMed Central  Google Scholar 

  26. Picat MQ, Thiébaut R, Lifermann F et al (2014) T-cell activation discriminates subclasses of symptomatic primary humoral immunodeficiency diseases in adults. BMC Immunol 15:13. https://doi.org/10.1186/1471-2172-15-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosen Y (2022) Pathology of granulomatous pulmonary diseases. Arch Pathol Lab Med 146:233–251

    Article  PubMed  Google Scholar 

  28. Hultberg J, Ernerudh J, Larsson M, Nilsdotter-Augustinsson Å, Nyström S (2020) Plasma protein profiling reflects TH1-driven immune dysregulation in common variable immunodeficiency. J Allergy Clin Immunol 146:417–428

    Article  CAS  PubMed  Google Scholar 

  29. Milardi G, Di Lorenzo B, Gerosa J et al (2022) Follicular helper T cell signature of replicative exhaustion, apoptosis, and senescence in common variable immunodeficiency. Eur J Immunol. https://doi.org/10.1002/eji.202149480

    Article  PubMed  PubMed Central  Google Scholar 

  30. Friedmann D, Unger S, Keller B et al (2021) Bronchoalveolar lavage fluid reflects a TH1-CD21low B-cell interaction in CVID-related interstitial lung disease. Front Immunol 11:616832. https://doi.org/10.3389/fimmu.2020.616832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenbaum JT, Pasadhika S, Crouser ED et al (2009) Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin Immunol 132:174–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou T, Casanova N, Pouladi N et al (2017) Identification of JAK-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci Rep 7:4237. https://doi.org/10.1038/s41598-017-04109-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li H, Zhao X, Wang J, Zong M, Yang H (2017) Bioinformatics analysis of gene expression profile data to screen key genes involved in pulmonary sarcoidosis. Gene 596:98–104

    Article  CAS  PubMed  Google Scholar 

  34. Damsky W, Thakral D, Emeagwali N et al (2018) Tofacitinib treatment and molecular analysis of cutaneous sarcoidosis. N Engl J Med 379:2540–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Damsky W, Young BD, Sloan B et al (2020) Treatment of multiorgan sarcoidosis with tofacitinib. ACR Open Rheumatol 2:106–109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Talty R, Damsky W, King B (2021) Treatment of cutaneous sarcoidosis with tofacitinib: a case report and review of evidence for Janus kinase inhibition in sarcoidosis. JAAD Case Rep 16:62–64

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lamers OAC, Smits BM, Leavis HL et al (2021) Treatment strategies for GLILD in common variable immunodeficiency: a systematic review. Front Immunol 12:606099. https://doi.org/10.3389/fimmu.2021.606099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scott-Taylor TH, Whiting K, Pettengell R, Webster DA (2017) Enhanced formation of giant cells in common variable immunodeficiency: relation to granulomatous disease. Clin Immunol 175:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Baughman RP, Iannuzzi M (2003) Tumour necrosis factor in sarcoidosis and its potential for targeted therapy. BioDrugs 17:425–431

    Article  CAS  PubMed  Google Scholar 

  40. Aukrust P, Lien E, Kristoffersen AK et al (1996) Persistent activation of the tumor necrosis factor system in a subgroup of patients with common variable immunodeficiency—possible immunologic and clinical consequences. Blood 87:674–681

    Article  CAS  PubMed  Google Scholar 

  41. Mullighan CG, Fanning GC, Chapel HM, Welsh KI (1997) TNF and lymphotoxin-alpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease. J Immunol 159:6236–6241

    Article  CAS  PubMed  Google Scholar 

  42. Franxman TJ, Howe LE, Baker JR (2014) Infliximab for treatment of granulomatous disease in patients with common variable immunodeficiency. J Clin Immunol 34:820–827

    Article  CAS  PubMed  Google Scholar 

  43. Sakkat A, Cox G, Khalidi N et al (2022) Infliximab therapy in refractory sarcoidosis: a multicenter real-world analysis. Respir Res 23:54

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boutboul D, Vince N, Mahevas M et al (2016) TNFA, ANXA11 and BTNL2 polymorphisms in CVID patients with granulomatous disease. J Clin Immunol 36:110–112

    Article  PubMed  Google Scholar 

  45. Morita R, Schmitt N, Bentebibel SE et al (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out with the Internal Medicine Department’s own funds.

Author information

Authors and Affiliations

Authors

Contributions

JFV, ML, and EO enrolled CVID patients in the cohort and collected clinical data. PB and JV ran the flow cytometry analyses. ML and MP conducted the histological analyses and tissue immunohistochemical labeling. ML computed the statistical analyses of the data. MP created the histological figures. JFV and MP wrote the paper.

Corresponding author

Correspondence to Jean-François Viallard.

Ethics declarations

Compliance with ethical standards

CVID patients were enrolled in the ALTADIH Cohort which was approved by the Bordeaux University Institutional Review Board on December 20, 2006 (no. 2.04.2007). Each CVID patient gave informed written consent before participating in the study. Retrospective non opposition to participate to the study was obtained from each sarcoidosis patient.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 14 KB)

428_2023_3684_MOESM3_ESM.jpg

Supplementary file3 (JPG 267 KB) Supplemental Figure Lymph-node biopsies: left column: CVID; right column: sarcoidosis. A–B Immunohistochemical (IHC) CD8 labeling showing CD8+ T cells in the granulomas surrounding germinal centers (hematoxylin & eosin (HE)×100). C–D IHC CD4 labeling showing CD4+ T cells in the granulomas surrounding germinal centers, which were more abundant than CD8+ T cells (HE ×100). E–F Inducible T-cell costimulator (ICOS; CD278) labeling which was located in the same area as CD4 on serial sections of T cells (HE ×100). G–H CD57 labeling was in the same area as CD4 on serial sections of T cells (HE ×100)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viallard, JF., Lescure, M., Oksenhendler, E. et al. STAT expression and TFH1 cells in CVID granulomatosis and sarcoidosis: immunological and histopathological comparisons. Virchows Arch 484, 481–490 (2024). https://doi.org/10.1007/s00428-023-03684-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03684-6

Keywords

Navigation